2,649 research outputs found

    Calipso: Physics-based Image and Video Editing through CAD Model Proxies

    Get PDF
    We present Calipso, an interactive method for editing images and videos in a physically-coherent manner. Our main idea is to realize physics-based manipulations by running a full physics simulation on proxy geometries given by non-rigidly aligned CAD models. Running these simulations allows us to apply new, unseen forces to move or deform selected objects, change physical parameters such as mass or elasticity, or even add entire new objects that interact with the rest of the underlying scene. In Calipso, the user makes edits directly in 3D; these edits are processed by the simulation and then transfered to the target 2D content using shape-to-image correspondences in a photo-realistic rendering process. To align the CAD models, we introduce an efficient CAD-to-image alignment procedure that jointly minimizes for rigid and non-rigid alignment while preserving the high-level structure of the input shape. Moreover, the user can choose to exploit image flow to estimate scene motion, producing coherent physical behavior with ambient dynamics. We demonstrate Calipso's physics-based editing on a wide range of examples producing myriad physical behavior while preserving geometric and visual consistency.Comment: 11 page

    Radiation Effects on CMOS Image Sensors With Sub-2 µm Pinned Photodiodes

    Get PDF
    CMOS image sensor hardness under irradiation is a key parameter for application fields such as space or medical. In this paper, four commercial sensors featuring different technological characteristics (pitch, isolation or buried oxide) have been irradiated with 60Co source. Based on dark current and temporal noise analysis, we develop and propose a phenomenological model to explain pixel performance degradation

    Rad Tolerant CMOS Image Sensor Based on Hole Collection 4T Pixel Pinned Photodiode

    Get PDF
    1.4μm pixel pitch CMOS Image sensors based on hole collection pinned photodiode (HPD) have been irradiated with 60Co source. The HPD sensors exhibit much lower dark current degradation than equivalent commercial sensors using an Electron collection Pinned Photodiode (EPD). This hardness improvement is mainly attributed to carrier accumulation near the interfaces induced by the generated positive charges in dielectrics. The pre-eminence of this image sensor based on hole collection pinned photodiode architectures in ionizing environments is demonstrated

    EEG index for control operators’ mental fatigue monitoring using interactions between brain regions

    Get PDF
    Mental fatigue is a gradual and cumulative phenomenon induced by the time spent on a tedious but mentally demanding task, which is associated with a decrease in vigilance. It may be dangerous for operators controlling air traffic or monitoring plants. An index that estimates this state on-line from EEG signals recorded in 6 brain regions is proposed. It makes use of the Frobenius distance between the EEG spatial covariance matrices of each of the 6 regions calculated on 20s epochs to a mean covariance matrix learned during an initial reference state. The index is automatically tuned from the learning set for each subject. Its performance is analyzed on data from a group of 15 subjects who performed for 90 min an experiment that modulates mental workload. It is shown that the index based on the alpha band is well correlated with an ocular index that measures external signs of mental fatigue and can accurately assess mental fatigue over long periods of time

    Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    Get PDF
    This report analyzed the potential for increasing energy efficiency and reducing greenhouse gas emissions (GHGs) in the non-residential building and the industrial sectors in India. The first two sections describe the research and analysis supporting the establishment of baseline energy consumption using a bottom up approach for the non residential sector and for the industry sector respectively. The third section covers the explanation of a modeling framework where GHG emissions are projected according to a baseline scenario and alternative scenarios that account for the implementation of cleaner technology

    Axolotls' and Mices' Oral-Maxillofacial Trephining Wounds Heal Differently

    Get PDF
    The Ambystoma maxicanum (axolotl) regenerates strikingly from wounds and amputations. Comparing its healing ability to non-regenerative species such as the mouse should help narrow in on mechanisms to improve human wound healing. Here, the tongue and intermandibular soft tissues of both mice (C57BL/6NCrl) and axolotls were wounded with a 2-2.5 mm punch biopsy. The study aimed to compare the differences between these 2 species following surgical resection with regard to the macroscopic and histological characteristics. These include wound closure times, epithelial wound sealing and thickness as well as acute immune marker myeloperoxidase (MPO) response over 30 days. Post surgery, mice visually showed greater haemorrhage; their wounds immediately collapsed while it took 14 days for the axolotls mandibular void to close. The epithelium sealed the axolotls' wound margins within 24 h with a maximal mean thickness of 0.42 +/- 0.13-fold normalized to unwounded skin. In mice, the epithelium separately sealed the ventral and dorsal sides, respectively at 7 and 7-30 days with mean maximal epithelial thicknesses reaching 13 +/- 5.6 and 3.0 +/- 0.63-fold. Mean MPO-positive cell values peaked in axolotls at 14 +/- 1.5-fold between hours 6-12; while in mice, it peaked at 8.7 +/- 0.9-fold between hours 24-96. We conclude that axolotls form smaller blood clots, have a faster and thinner epithelial cell migrating front, and a shorter MPO-positive cell response in comparison to mice. These observations may help refine future oral and facial wound-healing research and treatment.Peer reviewe

    Impact of contrast injection and stent-graft implantation on reproducibility of volume measurements in semiautomated segmentation of abdominal aortic aneurysm on computed tomography

    Full text link
    Purpose To assessthe impact of contrast injection and stent-graft implantation on feasibility, accuracy, and reproducibilityof abdominal aortic aneurysm (AAA) volume and maximaldiameter (D-max) measurements using segmentation software. Materials and methods CT images of 80 subjects presentingAAA were divided into four equal groups: with or without contrast enhancement, and with or without stent-graft implantation. Semiautomated software was used to segment the aortic wall, once by an expert and twice by three readers. Volume and D-max reproducibility was estimated by intraclass correlation coefficients (ICC), and accuracy was estimated between the expert and the readers by mean relative errors. Results All segmentations were technically successful. Themean AAA volume was 167.0±82.8 mL and the mean D-max 55.0±10.6 mm. Inter- and intraobserver ICCs for volume andD-max measurements were greater than 0.99. Mean relative errors between readers varied between −1.8±4.6 and 0.0± 3.6 mL. Mean relative errors in volume and D-max measurements between readers showed no significant difference between the four groups (P≥0.2). Conclusion The feasibility, accuracy, and reproducibility of AAA volume and D-max measurements using segmentation software were not affected by the absence of contrast injection or the presence of stent-graft

    Transcriptomic analysis of the poultry red mite, Dermanyssus gallinae, across all stages of the lifecycle

    Get PDF
    Acknowledgements Thanks go to the Centre for Genomic Research (CGR) at the University of Liverpool performing the TruSeq RNA-seq analysis and to our local layer farmers for their continued support and provision of mite material. Funding The authors gratefully acknowledge funding for this project from BBRSC (grant reference BB/J01513X/1), Zoetis and Akita Co. Ltd. and The British Egg Marketing Board Trust.Peer reviewedPublisher PD
    corecore