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a b s t r a c t

Mental fatigue is a gradual and cumulative phenomenon induced by the time spent on a tedious but

mentally demanding task, which is associated with a decrease in vigilance. It may be dangerous for op-

erators controlling air traffic or monitoring plants. An index that estimates this state on-line from EEG

signals recorded in 6 brain regions is proposed. It makes use of the Frobenius distance between the EEG

spatial covariance matrices of each of the 6 regions calculated on 20 s epochs to a mean covariance ma-

trix learned during an initial reference state. The index is automatically tuned from the learning set for

each subject. Its performance is analyzed on data from a group of 15 subjects who performed for 90 min

an experiment that modulates mental workload. It is shown that the index based on the alpha band is

well correlated with an ocular index that measures external signs of mental fatigue and can accurately

assess mental fatigue over long periods of time.
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. Introduction

Monitoring mental states using physiological signals has re-

eived more and more attention from researchers during the last

ears. Lots of articles were published on systems that detect

rowsiness in drivers and, to a lesser extent, on systems that de-

ect mental fatigue in operators. Drowsiness is defined as a state of

mpaired awareness associated with a desire or inclination to sleep

hereas mental fatigue is a physiological state that arises when

omeone spends a long time on a tedious task or on a task requir-

ng sustained attention, such as air traffic control or monitoring

f nuclear plant. The consequence of mental fatigue is a difficulty

o process incoming information in a fast and efficient way, which

akes it a dangerous state for process operators. It was shown that

he persons that spent a long time on a task were more prone

o make errors and their reaction time was increased (Paus et al.,

997).

Physiological modifications can be observed when mental fa-

igue increases. The ocular activity is modulated. Blinks are more
∗ Corresponding author at: University of Grenoble Alpes, F-38000 Grenoble,

rance. Tel.: +33476826415.
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requent and their duration is longer (Akerstedt & Gillberg, 1990).

everal ocular recorded via (near) infra-red eye-tracking systems,

igh frame rate cameras or electro-oculography (EOG) were pro-

osed in the literature and used as features to classify mental fa-

igue (Hu & Zheng, 2008; Hu & Zheng, 2009). One of the most

fficient ocular features for estimating the mental fatigue is the

erclos (percentage of eyelid closure), which increases with fa-

igue (Knipling, 1998). This feature was defined by Wierwille and

llsworth, 1994. It measures the percentage of eyelid closure over

he time. Mental fatigue is also known to alter the cerebral activ-

ty. The EEG signal is traditionally analyzed in five frequency bands,

amely delta [< 4 Hz], theta [4–8 Hz], alpha [8–13 Hz], beta [13–

0 Hz] and gamma [> 30 Hz]. An increase of activity in the alpha

nd theta bands predominantly in the parietal and central regions

f the brain is generally observed when the subject is fatigued or

ired, in association with a decrease in higher frequency bands

Akerstedt & Gillberg, 1990; Klimesch, 1999; Lal & Craig, 2002;

anaka et al., 2012; Trejo, Kubitz, Roispal, Kochavi, & Montgomery,

015).

Many research works were conducted recently to de-

elop automatic systems to detect drowsiness or mental fa-

igue from EEG signals. Most often, spectral features are

xtracted from the EEG signals (or from linear combina-

ions of the signals obtained by principal component analysis

Cao, Sun, Zhu, & Yan, 2010; Jung, Stensmo, & Sejnowski, 1997),
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Fig. 1. Trial structure. Participants memorize a list of 2 or 6 digits, and answer

whether the probe item was in the list.
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independent component analysis (Lin et al., 2005) or sparse

representation (Yu, Lu, Ouyang, Liu, & Lu, 2010), recorded with

1–32 electrodes, using either a Short Time Fast Fourier transform

(Shi & Lu, 2013), a wavelet transform (Subasi, 2005; Khushaba,

Kodagoda, Lal, & Dissanayake, 2011; Yu et al., 2010) or auto

regressive models (Zhao, Zheng, Zhao, Tu, & Liu, 2011). Then,

the features are merged into two to five levels of fatigue by

a classifier. The most popular classifiers are Gaussian linear or

quadratic classifiers (Ji, Li, Cao, & Wang, 2012; Rosipal, Peters,

Kecklund, Akerstedt, Gruber, & Woertz, 2007), neural networks

(Jung et al., 1997, Subasi, 2005) or kernel-based classifiers such

as SVM (Cao et al., 2010; Shen, Li, Ong, Shi-Yun, & Wilder-Smith,

2008; Zhang et al., 2009; Zhang, Zheng, & Yu, 2009; Zhao et al.,

2011). More recently, Roy, Charbonnier, & Bonnet, 2014 used a

common spatial filter associated with a Fisher Linear Discrimi-

nant Analysis classifier. Some authors use a regression model to

merge the features, which provides a continuous index of mental

fatigue (Lin et al., 2005; Lin et al., 2008a, 2008b). Trejo et al.,

2015 used a kernel partial least square decomposition combined

with a linear regression classifier. The major drawback of these

methods is the necessity to learn the models. Because of the

large inter-subject variability, learning an inter-subject model that

can fit any new individual is very difficult. The model must be

learnt for each subject to be accurate. This requires a training

session to be planned for any new individual before using the

system, which is hardly practical for an everyday use. Indeed, the

subject should reach advanced states of mental fatigue during

the training session to allow the classifier to be trained on these

classes.

To avoid learning a model, some papers propose indices calcu-

lated from EEG signals to estimate mental fatigue (Dasari, Shou, &

Ding, 2013; Jap, Lal, Fischer, & Bekiaris, 2009), such as the ratio

of slow waves to fast waves computed as the sum of the average

power in α and θ divided by the average power in β , or the fre-

quency of occurrence of alpha bursts (Borghini et al., 2012 ). But

they do not quantitatively relate these indices to levels of men-

tal fatigue. Lin et al. (2008a, 2008b) and Picot, Charbonnier, and

Caplier, 2012 propose to analyze the driver’s drowsiness by com-

paring the EEG signals measured on line to an initial state esti-

mated at the beginning of a driving session. They both use the EEG

power spectrum in the alpha and theta bands recorded with one

electrode (Oz or P3). The first ones propose to calculate the Ma-

halanobis distance between a feature vector formed of the spectral

power in 1 Hz bins of frequency in the alpha (4 bins) or theta band

(5 bins) during an epoch to the same mean vector calculated dur-

ing the initial state and show that this distance is correlated with

fatigue. The second ones convert the proposed index into a classi-

fication in 2 classes: alert/drowsy.

In the same idea, this paper presents an indicator to monitor

operators’ mental fatigue. In this work, mental fatigue is defined as

the gradual and cumulative process induced by the time spent on

a tedious but mentally demanding task, which is associated with

a decrease in vigilance. The indicator compares the EEG spectral

content recorded on line with 32 electrodes to the EEG spectral

content recorded in an initial state, when the subject is not fa-

tigued. The EEG signals are averaged in 6 regions of interest (ROIs)

and then filtered in a frequency band of interest. The mean spatial

covariance of the filtered signals is computed from a short period

at the beginning of the session, which forms the initial state. For

the rest of the session, the Frobenius distance between the initial

state mean covariance and the covariance calculated on 20 s slid-

ing epochs is transformed into a mental fatigue index that varies

between 0 and 1. The index performance is analyzed by compari-

son with an ocular index using the Perclos on a data set formed of

EEG and EOG signals that were recorded from 15 subjects who un-

derwent an experiment manipulating mental workload. During the
xperiment, the subjects had to keep their attention focused on a

creen and perform a boring but mentally demanding task during

ne hour and a half. The EEG index is also compared to the partic-

pants’ answers to a questionnaire evaluating their level of fatigue.

The method is a self-tuned one, which can provide a mental

atigue index from a very short training period, recorded when

he subject begins his/her task and is thus not mentally tired. The

raining is straight forward. It does not require any trial and errors

o set tuning parameters. This is a major advantage compared to

ethods that use supervised classification methods such as neu-

al networks, SVM or regression kernels. Those methods need to

e trained on a learning set formed of examples of all the classes

o recognize, which includes data gathered during a high mental

atigue state. The index that is provided is continuous and has a

alue between 0 and 1. It has a clear meaning, which allows its

irect use to assess the subject’s mental fatigue state, contrary to

ethods that provide a ratio of averaged powers or a distance that

till have to be related to the subject’s mental fatigue.

The paper is organized as follows. The experimental design and

he data used to evaluate the performances of the index are de-

cribed in Section 2. The method to produce the index is detailed

n Section 3. Results are presented in Section 4 and discussed in

ection 5.

. Material

.1. Ethic statement

This research was promoted by Grenoble’s clinical research di-

ection (France) and was approved by the French ethics commit-

tee (ID number: 2012-A00826-37) and the French health safety

agency (B120921-30). It was conducted according to the principles

expressed in the Helsinki Declaration.

2.2. Participants

Fifteen healthy volunteers performed the experiment (25 years

old ± 3.5 years; 9 females). They were right handed, had normal or

corrected-to-normal vision, had no neurological or psychiatric dis-

orders, nor were they under any medication. They signed a written

consent and received an 80-euro compensation. They were asked

to have a normal amount of sleep the day before the experiment

to avoid sleep deprivation.

2.3. Experiment

The experiment consisted of 750 consecutive trials. A trial

lasted 7.3 s in average. For each trial, the participant had to mem-

rize a list of sequential digits visually presented on a computer

creen. Then, a probe item flanked with question marks was dis-

layed (Fig. 1). The participant had to answer as quickly and as

ccurately as possible whether the probe was present or not in



Fig. 2. Time course of the experiment.
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he memorized list using a response box. Two levels of workload

ere considered, i.e. 2 and 6 digits to memorize (low and high

orkload respectively). Two 9-min. blocks and four 18-min. blocks

ere performed, for a total of 90 min. of recording (Fig. 2). The

articipants were allowed short breaks of 5 min between blocks.

t the end of the session, each participant had achieved 750 tri-

ls, 375 in low and 375 under high workload conditions, presented

n a random order. Given that the task was repetitive, boring but

entally engaging, mental fatigue was supposed to increase with

ime-on-task. This was confirmed thanks to behavioral and subjec-

ive measures. The participants had to assess their mental fatigue

sing Karolinska Sleepiness Scale (Akerstedt & Gillbert, 1990) be-

ore, in the middle and at the end of the experiment. Their sub-

ective answers, as well as an increase in reaction times and a de-

rease in accuracy, showed that the participants felt increasingly

ired.

.4. Data acquisition and pre-processing

Participants’ EEG activity was recorded using a BrainAmpTM

ystem (Brain Products, Inc.) and an Acticap® equipped with 32

g–AgCl active electrodes that were positioned according to the

xtended 10–20 system. The reference and ground electrodes

sed for acquisition were FCz and AFz respectively. The data were

ampled at 500 Hz. The EOG activity was also recorded using two

lectrodes positioned at the eyes outer canthi, and two respec-

ively above and below the left eye. Moreover, the EEG signal was

and-pass filtered between 1 and 40 Hz and re-referenced to a

ommon average reference.
Fig. 3. Regions of in
. Method

.1. Preprocessing

Let X ∈ R
32×10,000 be a 20-s EEG epoch. First, ocular artefacts

re removed by applying the blind source separation algorithm

OBI (Belouchrani, Abed-Meraim, Cardoso, & Moulines, 1997). The

EG signal is written as the instantaneous linear combination of

ource signals: X = AS with S ∈ R
32×10,000, the matrix of source

ignals.

The 32 EEG signals are at first transformed into 32 sources:

= WTX with WTA ≈ I32 (1)

here W is the demixing matrix calculated with SOBI. This algo-

ithm assumes stationary and uncorrelated sources for any time

ag.

The 10 sources the most correlated with the EOG signal are

hen selected as ocular sources and set to 0 prior to reconstructing

he EEG signal.

˜ = W−TDS (2)

here D is a diagonal matrix with binary diagonal elements where

he corresponding index of the sources selected as ocular sources

re set to 0 and the other sources set to 1.

After this denoising step, each epoch is filtered in the theta, al-

ha, and beta bands using a 5th order Butterworth filter. The EEG

ignals are further averaged in six regions of interest (ROIs), which

re displayed Fig. 3:

Thus, each epoch
�

X is transformed into a 6×10,000 epoch

ormed of 6 signals filtered in the b band. For implementation

urposes, each epoch is further split into 2-second epochs Xbi

6×1000) where b stands for θ , α or β .

.2. Creation of the initial reference state

Let T be a period of time when the subject is not tired. It forms

he learning period and it is composed of NL 2 s epochs Xbi which

ontain 6 zero mean signals.

The covariance of the signals in each epoch is calculated by:

i = 1

1000
XbiXbi

T (3)
terest (ROIs).



Fig. 4. Transformation of FDj into a fatigue index.

Fig. 5. Mean value per block of the EEG index using signals filtered in the alpha

band in function of the mean value of the EOG index, for the 15 subjects.
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The mean covariance during the learning period is:

�L = 1

NL

NL∑
k=1

�k (4)

And the covariance of the signals during a 20 s epochs is:

�l j = 1

10

j∑
k= j−9

�k (5)

The Frobenius distance between �Land �lj is calculated as:

FDj =
∥∥�L − �l j

∥∥
F

= (trace

[
(�L − �l j)(�

L − �l j)
T
]
)

1
2 (6)

N = NL
10 Frobenius distances can be computed from 20 snon-

overlapping epochs during the learning period. The empirical dis-

tribution of these N values FDj is computed. Let us note FD90 the

90th percentile and FD98 the 98th percentile of the distribution.

3.3. Mental fatigue index

The mental fatigue index makes use of the Frobenius distance

between �L and the covariance �lj calculated during a 20 s epoch.

The distance FDj is compared to the empirical distribution esti-

mated during the learning period using the function presented in

Fig. 4.

If FDj is below the 90th percentile, the index is equal to 0. Its

meaning is that the distance calculated is in the same range as

the distances measured during the learning set. If FDj is above the

98th percentile, the index is 1, which means that the distance is

significantly higher (and thus the covariance matrix is significantly

different) than what was measured during the learning set. For a

gradual change of the fatigue index, any value of FDjbetween FD90

and FD98 gets a value between 0 and 1. The 98th percentile is cho-

sen because it is an estimate of the highest value reached by the

distance during the learning state, more robust to outliers than the

maximum. The 90th percentile is chosen because it gives a fair as-

sessment of the distance highest values without being too close to

the 98th percentile. It thus limits the index switches between 0

and 1 and allows the index to change gradually.

For an on-line implementation, the mental fatigue index is

computed on a sliding window with an overlap of 2 s. A current

epoch X of 20 s is recorded, preprocessed as in 3.1 and split in 2 s

epochs. The index is calculated backward, every 2 s, from 2 s af-

ter the beginning of X until the current time, using the 2 s epochs

calculated on the previous epoch X and on the current one.

4. Results

As explained in 2.3, each experiment lasts for 90 min and is

split into 6 different blocks of 9 or 18 min separated by a short

break. The learning set is formed of the last 15 min of block 1. The
rst 3 min are removed to avoid transitory effects due to the par-

icipant’s getting used to the task. Therefore, a total of 45 epochs

s available to learn the empirical distribution ofFDj. The 98th per-

entile is close to the second highest value of FDj.

4.1. Comparison with an EOG index

The EEG index is compared to an EOG index calculated per sub-

ject and per block. For each subject, blinks are extracted from the

vertical EOG signal and the percentage of closure (Perclos) is calcu-

lated for each blink (Wierwille, 1994). The mean value of the Per-

clos is calculated for each of the 6 blocks. The ratio between the

mean value in each block on the mean value in the first block is

calculated. This ratio is calculated so as to have comparable mea-

sures between subjects. It measures the evolution of the Perclos

compared to the first block, in percentage.

The mean value of the EEG index is calculated for each subject

and each block. The correlation between the EEG index and the

EOG index is calculated using the 90 values obtained (6 blocks, 15

subjects). Fig. 5 displays the EOG index in function of the EEG in-

dex using signals filtered in the alpha band.

The EOG index is higher than 1 from block 2 to blocks 6 for

all the blocks of the 15 subjects except for 2 blocks where it de-

creased below 1. This confirms the fact that mental fatigue globally

increased during the experiment, since the Perclos increases. Fig. 5

shows that an increase in the EOG index is associated with an in-

crease in the EEG index and that the increase is higher in blocks

4–6.

The correlation reaches 0.71 when the signals are filtered in the

alpha band. However, it decreases to 0.47 when the signals are fil-

tered in the theta band and to 0.35 when the signals are filtered

in the beta band. This is consistent with the results reported in the

literature where changes in the alpha band, and in a lesser extent

in the theta band, were observed when mental fatigue increased.

Various combinations of the theta and alpha indices were tried :

the mean, the maximal or the minimal value of the two indices.

The highest performance was obtained using the mean. The cor-

relation with the EOG index reached 0.69, which is slightly lower

than the correlation value obtained with the alpha index.

Fig. 6 displays the EEG index in the 3 bands for one subject.

The green marks show the beginning and end of each block. One

can see the increase of the alpha EEG index in function of the time

spent on the task. An increase in the theta band can also be seen



Fig. 6. Time evolution of the EEG index in the alpha, theta and beta bands, for one

subject.

Fig. 7. Mean value EEG index per block, for the 15 subjects.
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Fig. 8. Boxplot of the EOG index and the variation of the KSS score for the 2 groups

of subjects.

Fig. 9. Time evolution of the EEG index in the alpha band for subjects no. 4, 5, 6

and 15.
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hen the time on task increases but in a lesser extent than in the

lpha band. On the other hand, no gradual increase nor decrease is

bserved in the beta band.

.2. Analysis of the index in the alpha band

Results in the alpha band are now further analyzed. Fig. 7 dis-

lays the averaged value of the EEG index in each block, for each

ubject. One can see that a group of 7 subjects seems to get in-

reasingly tired, with an EEG index higher than 0.4 (which means

hat more than 40% of the epochs forming the block are different

rom the learning set), while the rest seems to be unaffected by

he time spent on the task.

The subjects are now separated in two groups: the group with

n index higher than 0.4 in the last block (6 subjects) and the oth-

rs (9 subjects). For these two groups, the value of the EOG index

n the last block as well as the difference between the KSS score

t the end and at the beginning of the experiment are displayed

n a boxplot in Fig. 8. The variation of the KSS score and the value

f the EOG index are higher in the group with an index above 0.4.

his shows that the group with a higher EEG index does exhibit
xternal signs of mental fatigue associated with a subjective per-

eption of fatigue.

.3. Analysis of 4 subjects representative of the two groups

In what follows, the EEG indices of 4 subjects representative of

heir group (2 from the first group - n°4 and 5, 2 from the second

roup - n°6 and 15) are further analyzed. Their evolutions in time

re displayed in Fig. 9. The 4 subjects exhibit two very distinct

ehaviors. The EEG indices of the first 2 subjects do not increase

n time. They remain equal to 0 except for brief periods of times.

n the other hand, the indices of the last two increase with the

ime spent on the task. Once the index has reached a high value,

t remains globally high except when the subject stops for a short

reak. The index gets shortly back to 0 just after the break before

ncreasing again. Moreover, the longer the time spent on the task,

he shorter the effect of the break. The variation of the KSS score



Fig. 10. EEG index per block, KSS variation (divided by 10; blue line) and EOG index

minus 1 per block for subjects 4, 5, 6 and 15. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article).

Fig. 11. Normalized mean covariance matrices in block 1 and block 6 for subjects

no. 4, 5, 6 and 15.
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and the EOG index displayed in Fig. 10 confirms the evolution to-

wards a fatigue state for the last two subjects.

To analyze the changes that occurred in the EEG signals for

these 4 subjects, the mean covariance matrices in block 1 and in

block 6 are analyzed. The trace of the covariance matrix divided by

the number of ROIs provides information on the global energy of

the EEG signals. It is equal to 5.7, 3, 0.86 and 10.4 μV2 for subjects

4, 5, 6 and 15 in block 1 and to 6, 3.5, 1.4, and 20.1 μV2 in block

6. One can see that they are very different from one subject to an-

other and cannot be directly compared. An inter-subject classifier

able to detect mental fatigue for any subject will get poor results

on these subjects. It shows the necessity to learn a classifier for

any new subject or, as proposed in this paper, to analyze the evo-

lution of the EEG signals from an initial state. Fig. 11 displays the

ovariance matrices for these 4 subjects as a unique image. The

ines from 1 to 6 correspond to the matrices in block 1, the lines
rom 7 to 12 to the matrices in block 6. Subjects 4, 5, 6 and 15 are

isplayed in columns. The columns from 1 to 6 are the matrices of

ubject 4, then columns 7 to 12 are the matrices of subject 5 and

o on. All the matrices are normalized by dividing each matrix of

ne subject by the trace of the covariance in block 1 of the same

ubject.

One can see almost no changes between block1 and block 6 for

ubjects 4 and 5. For subjects 6 and 15, the changes can be seen

ostly in ROIs 3 (Fronto-central right), 4 and 6 (Parieto-occipital

edian and right). The variance in the alpha band increases in

he 3 ROIS, as well as their covariance. The covariance with ROI

(Fronto-central median) also increases. On the other hand, ROIs

(Fronto-central left) and 5 (Parieto-occipital left) seem unaltered.

. Discussion

A method to monitor operators’ mental fatigue is proposed. The

ethod analyzes the evolution of the current covariance matrix,

calculated using a 20 s epoch and 6 different ROIs, from the mean

covariance learned at the beginning of the session, when the sub-

ject is assumed not to be fatigued. The statistical distribution of

the distance between the mean covariance of the learning set and

the covariance calculated from 20 s epochs is learned and used

to transform the distance into a binary index. For this index, 1

means that the distance currently measured is significantly differ-

ent (higher than the 98th percentile) from what was observed dur-

ing the learning set while 0 means that it is similar. The analysis

of the mean covariance matrices in block 1 for 4 subjects shows

that the covariance matrix in the initial state is very different for

each individual. However, the computation of a deviation from an

original state makes it possible to overcome this inter-individual

variability issue. All the information required to calculate the fa-

tigue index is gathered at the beginning of the session: the mean

spatial covariance matrix, which provides information on the en-

ergy of the signals in each ROI as well as their interaction, and the

variations of the covariance matrix during the initial state. The pa-

rameters that convert the distance into a fatigue index (the 90th

and 98th percentiles of the distance) are tuned for each subject in

an automatic way, without any assumption on the distance distri-

bution function.

The on-line implementation of the index is rather easy. EEG

is recorded during 20 s, de-noised and filtered, then split in 2 s

epochs. The mean covariance can be calculated at the end of the

learning period as well as the distance distribution function and

the 2 percentiles that tune the conversion of the distance into an

index. Then, the covariance on the next 20 s epochs can be calcu-

lated every 2 s using two consecutive 20 s epochs when the sliding

window overlaps two epochs. Thus, the index is calculated every

2 s but updated every 20 s.

Epochs of 20 s were chosen in concordance with the literature.

Moreover, considering the experiment’s design, in which mental

workload varies a lot over short periods of time, 20 s ensure that

the EEG variations due to changes in workload are smoothed out.

In this paper, the EEG indicator was compared to an external

sign of mental fatigue, the Perclos, calculated using the EOG, to

evaluate its performance. The Perclos is known to be well corre-

lated with fatigue (Wierwille & Ellsworth, 1994). The KSS score

variation was also used to analyze the performances of the EEG in-

dicator. Another common way to evaluate a subject’s fatigue state

is to use the behavior parameters. In this study, both the accuracy

and the reaction time were measured. However, though some

significant differences were observed at the group level between

reaction times and accuracies in the block 2 and the block 5, no

correlation was obtained between changes in Perclos and changes

in accuracies or reaction times per block, for the different sub-

jects. No correlation between the EEG indicator and the behavior
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arameters was observed either. This may be because the task was

ather simple and could still be achieved with acceptable perfor-

ances, even when the subjects were tired. The same observation

as made by Trejo et al., 2015 who conducted a rather similar

xperiment.

The results showed that the EEG index based on the alpha band

as significantly correlated with changes in Perclos. Also, 6 sub-

ects out of 15 seemed to be increasingly tired, with an index grad-

ally changing from 0 to 1 with increasing time-on-task. The other

ubjects’ index remained globally close to 0, with only very short

eriods when the index reached 1. Using KSS questionnaires, these

ubjects reported to feel globally less tired than the other 6. The

roposed index is not meant to be used as an instant indicator of

atigue that would raise an alarm whenever it gets higher than 1.

ndeed, sudden changes in the covariance matrix can be observed

ven in the initial state though they are not related to increased

atigue. Mental fatigue is seen as a gradual and cumulative process

nduced by time on task. A high index can be seen as fatigue only

f it remains high for some time. Therefore, the index mean value

omputed over a period of time can give an overall assessment of

atigue. In the case of these experiments, it can inform us on which

articipant is still fit to perform the task at the end of each block.

n the same idea, its mean value during periods of, say, 10–15 min

ould be used to assess the global fatigue state of an operator who

as to concentrate on information displayed on a screen and to

ecide if it is time for him/her to have a break. In the same idea

s Trejo et al., 2015, the evolution of the subjects toward the fa-

igued state can be observed over time. However, contrary to Trejo

t al., the index is not a regression index learnt from data gath-

red at the beginning and at the end of the session but it mea-

ures a statistical deviation from the initial not fatigued state. The

efreshing effect of the breaks can be observed on the time evolu-

ion of the index. Indeed, for subjects who feel tired at the end of

he session (reported by KSS questionnaire), the index gets back to

during the period following the break. It was also observed that

he freshening effect of the break diminished over time with the

ubject becoming tired more quickly.

The fact that the index makes use of the covariance matrix of

EG signals recorded at 6 different locations on the scalp is quite

nnovative as it makes it rather sensitive to changes in interactions

n brain regions. Indeed, covariance can be seen as a simple con-

ectivity measure. The index is not only sensitive to changes in

he EEG energy in the alpha band (the diagonal terms of the co-

ariance matrix) but also to the changes in the interrelationship

etween the signals measured in the ROIs. The ROIs were selected

o cover all the areas of the scalp. For the 4 subjects that were

urther analyzed, the main changes are observed in ROI1 (Fronto-

entral median), ROI3 (Fronto-central right), ROI4 (Parieto-occipital

edian) and ROI6 (Parieto-occipital right). The variance of EEG in

OI3, ROI4 and ROI6 globally increases as well as their covariance.

he variance of ROI1 (Fronto-central median) does not increase

uch but its covariance with ROI3, ROI4 and ROI6 increases. Glob-

lly, this means that, as expected from the literature, alpha activity

rom fronto-central and parieto-occipital sites is a good indicator of

ne’s mental fatigue state in a general manner. Yet here only me-

ian and right electrode sites seem really relevant. But most im-

ortantly, this study shows that not only is alpha activity relevant

t the electrode site level, it is also a good marker for mental state

stimation based on inter-electrode connectivity.

This paper showed that it is possible to assess mental fatigue

sing EEG signals. Ocular indices are another efficient way to as-

ess fatigue. They are well correlated with fatigue (Hu & Zheng,

009) and are used as a reference in this paper. The extraction

f ocular indices can be done through EOG signals. However, this

equires for the operator to wear EOG electrodes near his eyes,

hich can be very uncomfortable and can impair her/his perfor-
ance. Ocular signals can be also extracted using high frame cam-

ras Picot, Charbonnier, Caplier, and Vu, 2012. However, with a

rame rate of 30 fpm, standard cameras record about 5 frames dur-

ng a standard blink (duration about 15 ms) and may provide only

very inaccurate estimation of the blink duration. In addition, high

rame rate cameras are expensive, which makes this solution less

ompetitive. The advantage of using EEG signals is that an accurate

atigue indicator can be calculated at a low cost. The new technol-

gy that is now emerging to record EEG in a friendly way, such

s EEG headsets (like the Emotiv headset for instance) or caps,

akes it possible to imagine a system that would monitor opera-

ors’ mental fatigue using EEG analysis during long periods of oper-

tion. Moreover, the wealth of information provided by EEG signals

akes it possible to combine the indicator proposed with indica-

ors estimating other mental states, such as workload levels (Roy,

onnet, Charbonnier, Campagne, & Jallon, 2015) to have a global

ssessment of the operator’s ability to fulfill her/his mission.

. Conclusion

In this paper, an on-line innovative EEG index is proposed to

ssess operators’ mental fatigue over long periods of time. It uses

he EEG signals recorded from 24 electrodes merged into 6 regions

f interest. The index measures the deviation of the spatial covari-

nce matrix calculated on 20 s from a mean spatial covariance ma-

rix learned during an initial state. It is automatically tuned using

he 90th and 98th percentiles of the distance distribution calcu-

ated during the initial state. The index performance was analyzed

n a group of 15 subjects who performed a tedious but mentally

emanding task on a computer during 90 min. The index was com-

ared with an ocular index measuring the external signs of mental

atigue as well as with the subject’s fatigue evaluation using the

arolinska Sleepiness Scale. It was shown that it can be used based

n the alpha activity to make an efficient assessment of an oper-

tor’s mental fatigue state. The correlation with the ocular index

as as high as 0.7.
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