30 research outputs found

    Feedback from the IR Background in the Early Universe

    Full text link
    It is commonly believed that the earliest stages of star-formation in the Universe were self-regulated by global radiation backgrounds - either by the ultraviolet Lyman-Werner (LW) photons emitted by the first stars (directly photodissociating H_2), or by the X-rays produced by accretion onto the black hole (BH) remnants of these stars (heating the gas but catalyzing H_2 formation). Recent studies have suggested that a significant fraction of the first stars may have had low masses (a few M_sun). Such stars do not leave BH remnants and they have softer spectra, with copious infrared (IR) radiation at photon energies around 1eV. Similar to LW and X-ray photons, these photons have a mean-free path comparable to the Hubble distance, building up an early IR background. Here we show that if soft-spectrum stars, with masses of a few M_sun, contributed more than 1% of the UV background (or their mass fraction exceeded 90%), then their IR radiation dominated radiative feedback in the early Universe. The feedback is different from the UV feedback from high-mass stars, and occurs through the photo-detachment of H^- ions, necessary for efficient H_2 formation. Nevertheless, we find that the baryon fraction which must be incorporated into low-mass stars in order to suppress H_2-cooling is only a factor of few higher than for high-mass stars.Comment: Accepted for publication in MNRAS (Letters). 5 pages with 2 figure

    Suppression of HD-cooling in protogalactic gas clouds by Lyman-Werner radiation

    Full text link
    It has been shown that HD molecules can form efficiently in metal-free gas collapsing into massive protogalactic halos at high redshift. The resulting radiative cooling by HD can lower the gas temperature to that of the cosmic microwave background, T_CMB=2.7(1+z)K, significantly below the temperature of a few 100 K achievable via H_2-cooling alone, and thus reduce the masses of the first generation of stars. Here we consider the suppression of HD-cooling by UV irradiation in the Lyman-Werner (LW) bands. We include photo-dissociation of both H_2 and HD, and explicitly compute the self-shielding and shielding of both molecules by neutral hydrogen as well as the shielding of HD by H_2. We use a simplified dynamical collapse model, and follow the chemical and thermal evolution of the gas, in the presence of a UV background. We find that a LW flux of J_crit = 1e-22 erg/cm^2/sr/s/Hz is able to suppress HD cooling and thus prevent collapsing primordial gas from reaching temperatures below 100 K. The main reason for the lack of HD cooling for J>J_crit is the partial photo-dissociation of H_2, which prevents the gas from reaching sufficiently low temperatures (T<150K) for HD to become the dominant coolant; direct HD photo-dissociation is unimportant except for a narrow range of fluxes and column densities. Since the prevention of HD-cooling requires only partial H_2 photo-dissociation, the critical flux J_crit is modest, and is below the UV background required to reionize the universe at redshift z=10-20. We conclude that HD-cooling can reduce the masses of typical stars only in rare halos forming well before the epoch of reionization.Comment: 14 pages with 9 figures, submitted to MNRA

    The First Magnetic Fields

    Full text link
    We review current ideas on the origin of galactic and extragalactic magnetic fields. We begin by summarizing observations of magnetic fields at cosmological redshifts and on cosmological scales. These observations translate into constraints on the strength and scale magnetic fields must have during the early stages of galaxy formation in order to seed the galactic dynamo. We examine mechanisms for the generation of magnetic fields that operate prior during inflation and during subsequent phase transitions such as electroweak symmetry breaking and the quark-hadron phase transition. The implications of strong primordial magnetic fields for the reionization epoch as well as the first generation of stars is discussed in detail. The exotic, early-Universe mechanisms are contrasted with astrophysical processes that generate fields after recombination. For example, a Biermann-type battery can operate in a proto-galaxy during the early stages of structure formation. Moreover, magnetic fields in either an early generation of stars or active galactic nuclei can be dispersed into the intergalactic medium.Comment: Accepted for publication in Space Science Reviews. Pdf can be also downloaded from http://canopus.cnu.ac.kr/ryu/cosmic-mag1.pd

    The First Stars

    Get PDF
    The first stars to form in the Universe -- the so-called Population III stars -- bring an end to the cosmological Dark Ages, and exert an important influence on the formation of subsequent generations of stars and on the assembly of the first galaxies. Developing an understanding of how and when the first Population III stars formed and what their properties were is an important goal of modern astrophysical research. In this review, I discuss our current understanding of the physical processes involved in the formation of Population III stars. I show how we can identify the mass scale of the first dark matter halos to host Population III star formation, and discuss how gas undergoes gravitational collapse within these halos, eventually reaching protostellar densities. I highlight some of the most important physical processes occurring during this collapse, and indicate the areas where our current understanding remains incomplete. Finally, I discuss in some detail the behaviour of the gas after the formation of the first Population III protostar. I discuss both the conventional picture, where the gas does not undergo further fragmentation and the final stellar mass is set by the interplay between protostellar accretion and protostellar feedback, and also the recently advanced picture in which the gas does fragment and where dynamical interactions between fragments have an important influence on the final distribution of stellar masses.Comment: 72 pages, 4 figures. Book chapter to appear in "The First Galaxies - Theoretical Predictions and Observational Clues", 2012 by Springer, eds. V. Bromm, B. Mobasher, T. Wiklin

    Multiple Core and Vibronic Coupling Effects in Attosecond Stimulated X-Ray Raman Spectroscopy

    Full text link
    Attosecond Stimulated X-ray Raman Spectroscopy (SXRS) is a promising technique for investigating molecular electronic structure and photochemical processes with high spatial and temporal resolution. We present a theoretical study of SXRS from multiple core excitation sites of the same element. Two issues are addressed: interference between pathways contributing the signals from different sites; and how nuclear vibrations influence the signals. Taking furan as a model system, which contains two types of carbons Cα and Cβ, we performed time-dependent density functional theory calculations and computed the SXRS signals with two pulses tuned at the carbon K-edge. Our simulations demonstrate that the SXRS signal from the Cα and Cβ sites are non-additive, owing to the significant mixed contributions (Cα 1s excitations by the pump pulse followed by Cβ 1s excitations by the probe, or vice verse). Harmonic vibrations linearly coupled to the electronic transitions are incorporated using the cumulant expansion. The nuclei act as a bath for electronic transitions which accelerate the decay of time-domain signal. The frequency-domain spectrum is modified by a small red shift and high-resolution fine-structure features are introduced

    Quantum mechanical studies of ionization and electron transfer in diatomic systems : O2 and H+ + H-

    No full text
      The present thesis is based upon two papers concerning the core-valence double onization of molecular oxygen and mutual neutralization of H+ and H- ions at low collision energies. The former of these processes has been studied for the first time using a magnetic bottle time-of-ight electron coincidence spectrometer in combination with ab initio electronic structure calculations. The core-valence photoelectron spectra have been interpreted by comparing with the calculated double ionization energies, as well as the conventional valence band spectrum. Based on this comparison, some general features of the process are discussed and assignments for several of the dicationic states proposed. The latter process has been studied by means of a molecular close coupling approach in which both the nuclei and the electrons have been treated at a quantum mechanical level of theory. Accurate ab initio potential energy curves and non-adiabatic couplings have been used to calculate the neutralization cross section in the collision energy region 0.001 to 100 eV. Special emphasis has been put on the energy region below a few eV from which the low temperature rate coe_cient is evaluated. In this region, the calculated neutralization cross section is in good agreement with several other theoretical studies, but is a factor of two to three lower than the only published experimental data.  QC 2010112

    pH-Dependent absorption spectrum of a protein: a minimal electrostatic model of Anabaena sensory rhodopsin

    No full text
    International audienceA minimal electrostatic model is introduced which aims at reproducing and analyzing the visible- light absorption energy shift of a protein with pH. It relies on the existence of a protein structure, the prediction of titratable amino-acid pKa values and a very limited set of parameters. Applied to the case of the photochromic Anabaena sensory rhodopsin protein, the model succeeds in reproducing qualitatively the reported experimental data, confirming the importance of aspartic acid 217 in the observed blue shift in the lambda(max) of ASR at neutral pH. It also suggests for the first time the role of two other amino acids, glutamic acid 36 at basic pH and aspartic acid 120 at acidic pH

    Quantum Scattering with the Driven Schrödinger Approachand Complex Scaling

    No full text
    Quantum scattering calculations of two and three-body systems with Coulomb interaction using thedriven Schrödinger equation combined with exterior complex scaling are discussed. A rigorous formulationfor two-body scattering is reported, and its generalization to three-body scattering is considered
    corecore