154 research outputs found

    Black Holes from Branes: Various string theoretical constructions

    Get PDF
    In this dissertation we have studied black holes from various perspectives in string theory. One common theme of all the black holes that we have studied, is that they are constructed from branes. In part I we considered supersymmetry breaking Scherk-Schwarz duality twists and their effect on black holes in string theory. Our setup was type IIB string theory compactified on a four-torus and then further compactified on a circle with a duality twist along the circle. In these reductions we have studied several different brane configurations, the D1-D5-P system and dual configurations, that give rise to five-dimensional black holes in the standard untwisted reduction. Scherk-Schwarz reductions can be lifted to string theory so long as the monodromy is an element of the discrete U-duality group. We have worked out the quantization conditions that this requirement imposes on the twist parameters. Moreover, when the duality twist is a T-duality, the theory at the minimum of the potential can be described as an asymmetric orbifold. We have explicitly constructed this orbifold, and we have argued what conditions the survival of certain D-brane configurations puts on the orbifold. In part II we studied M2-branes and D2-branes wrapping Riemann surfaces with non-constant curvature: spindles and topological discs. These give rise to 4d black hole solutions in N=2 STU supergravity, whose near-horizon is a warped product of AdS2 with the Riemann surface. We have shown that the disc and spindle solutions can be obtained from different global completions of the same local solution, and we have analyzed their properties in detail. We have uplifted various truncations of this family of near-horizon solutions to M-theory and to massive type IIA. We found that some of these uplifts yield smooth solutions, while others yield solutions that have singularities associated to smeared branes or monopoles. In part III we have classified the necessary and sufficient conditions for near-horizon geometries of extremal supersymmetric rotating black holes in 11d supergravity, which are associated to rotating M2-branes. These near-horizon geometries contain an AdS2 factor which is fibered by the internal geometry. We have allowed for the most general fibration and flux configuration supporting rotating M2-branes. Due to the generality of our ansatz the black holes covered by our classification can include both electric and magnetic charges as well as angular momentum in 4d. By use of dualities, we have also presented necessary and sufficient conditions for the near-horizon geometry of a class of rotating black string solutions in type IIB. Finally, we have embedded several known 4d black hole solutions from the literature into our classification

    Black holes in string theory with duality twists

    Get PDF
    We consider 5D supersymmetric black holes in string theory compactifications that partially break supersymmetry. We compactify type IIB on T4T^4 and then further compactify on a circle with a duality twist to give Minkowski vacua preserving partial supersymmetry (N=6,4,2,0\mathcal{N}=6,4,2,0) in five dimensions. The effective supergravity theory is given by a Scherk-Schwarz reduction with a Scherk-Schwarz supergravity potential on the moduli space, and the lift of this to string theory imposes a quantization condition on the mass parameters. In this theory, we study black holes with three charges that descend from various ten-dimensional brane configurations. For each black hole we choose the duality twist to be a transformation that preserves the solution, so that it remains a supersymmetric solution of the twisted theory with partially broken supersymmetry. We discuss the quantum corrections arising from the twist to the pure gauge and mixed gauge-gravitational Chern-Simons terms in the action and the resulting corrections to the black hole entropy.Comment: Main text 48 pages. v2: minor revision

    Freely acting orbifolds of type IIB string theory on T5T^5

    Full text link
    We study freely acting orbifolds of type IIB string theory on T5T^5 that spontaneously break supersymmetry from N=8\mathcal{N}=8 to N=6,4,2\mathcal{N}=6,4,2 or 0 in five dimensions. We focus on orbifolds that are a Zp\mathbb{Z}_p quotient by a T-duality acting on T4T^4 and a shift on the remaining S1S^1. Modular invariant partition functions are constructed and detailed examples of both symmetric and asymmetric orbifolds are presented, including new examples of five-dimensional non-supersymmetric string theories with no tachyons. The orbifolds we consider arise at special points in the moduli space of string theory compactifications with a duality twist. The supergravity limit of these are Scherk-Schwarz reductions which generate gauged supergravities with positive definite potentials on the moduli space in five dimensions. Both symmetric and asymmetric freely acting orbifolds give a landscape of Minkowski vacua. For gauged supergravities to belong to this landscape, we find a number of constraints and conditions. Firstly, the scalar potential should lead to a massive spectrum with masses that obey quantization conditions arising from a string theory orbifold, which we discuss in detail. Secondly, we find constraints on the massless sector, e.g. in the examples of orbifolds preserving sixteen supercharges in five dimensions that we consider, only an odd number of vector multiplets arise. Lastly, we present new examples of candidate asymmetric orbifolds with modular invariant partition functions, but with non-integral coefficients in the qqˉq\bar{q}-expansion in the twisted sector.Comment: 66 pages, added refs and minor correction

    Automatic detection of oesophageal intubation based on ventilation pressure waveforms shows high sensitivity and specificity in patients with pulmonary disease

    Get PDF
    Background: Unrecognised endotracheal tube misplacement in emergency intubations has a reported incidence of up to 17%. Current detection methods have many limitations restricting their reliability and availability in these circumstances. There is therefore a clinical need for a device that is small enough to be practical in emergency situations and that can detect oesophageal intubation within seconds. In a first reported evaluation, we demonstrated an algorithm based on pressure waveform analysis, able to determine tube location with high reliability in healthy patients. The aim of this study was to validate the specificity of the algorithm in patients with abnormal pulmonary compliance, and to demonstrate the reliability of a newly developed small device that incorporates the technology. Materials and methods: Intubated patients with mild to moderate lung injury, admitted to intensive care were included in the study. The device was connected to the endotracheal tube, and three test ventilations were performed in each patient. All diagnostic data were recorded on PC for subsequent specificity/sensitivity analysis. Results and discussion: A total of 105 ventilations in 35 patients with lung injury were analysed. With the threshold D-value of 0.1, the system showed a 100% sensitivity and specificity to diagnose tube location. Conclusion: The algorithm retained its specificity in patients with decreased pulmonary compliance. We also demonstrated the feasibility to integrate sensors and diagnostic hardware in a small, portable hand-held device for convenient use in emergency situations

    Advances in emergency networking

    Get PDF
    Crisis situations require fast regain of control. Wireless ad-hoc networks will enable emergency services to act upon the actual status of the situation by retrieving and exchanging detailed up-to-date information. Deployment of highbandwidth, robust, self-organising ad-hoc networks will therefore enable quicker response to typical hat/where/when questions, than the more vulnerable low-bandwidth communication networks currently in use. This paper addresses a number of results of the projects AAF (Adaptive Ad-hoc Freeband communications) and Easy Wireless that enable high bandwidth robust ad-hoc networking

    Drosophila Neurotrophins Reveal a Common Mechanism for Nervous System Formation

    Get PDF
    Neurotrophic interactions occur in Drosophila, but to date, no neurotrophic factor had been found. Neurotrophins are the main vertebrate secreted signalling molecules that link nervous system structure and function: they regulate neuronal survival, targeting, synaptic plasticity, memory and cognition. We have identified a neurotrophic factor in flies, Drosophila Neurotrophin (DNT1), structurally related to all known neurotrophins and highly conserved in insects.By investigating with genetics the consequences of removing DNT1 or adding it in excess, we show that DNT1 maintains neuronal survival, as more neurons die in DNT1 mutants and expression of DNT1 rescues naturally occurring cell death, and it enables targeting by motor neurons. We show that Spa¨ tzle and a further fly neurotrophin superfamily member, DNT2, also have neurotrophic functions in flies. Our findings imply that most likely a neurotrophin was present in the common ancestor of all bilateral organisms, giving rise to invertebrate and vertebrate neurotrophins through gene or whole-genome duplications. This work provides a missing link between aspects of neuronal function in flies and vertebrates, and it opens the opportunity to use Drosophila to investigate further aspects of neurotrophin function and to model related diseases

    Easy Wireless: broadband ad-hoc networking for emergency services

    Get PDF
    Wireless ad-hoc networks will enable emergency services to continuously overview and act upon the actual status of the situation by retrieving and exchanging detailed up-to-date information between the rescue workers. Deployment of high-bandwidth, robust, self-organising ad-hoc networks will enable quicker response to typical what/where/when questions, than the more vulnerable low-bandwidth communication networks currently in use. This paper addresses a number of results of the Easy Wireless project that enable high bandwidth robust ad-hoc networking. Most of the concepts presented here have been experimentally verified and/or prototyped

    The Gediz River fluvial archive: A benchmark for Quaternary research in Western Anatolia

    Get PDF
    The Gediz River, one of the principal rivers of Western Anatolia, has an extensive Pleistocene fluvial archive that potentially offers a unique window into fluvial system behaviour on the western margins of Asia during the Quaternary. In this paper we review our work on the Quaternary Gediz River Project (2001–2010) and present new data which leads to a revised stratigraphical model for the Early Pleistocene development of this fluvial system. In previous work we confirmed the preservation of eleven buried Early Pleistocene fluvial terraces of the Gediz River (designated GT11, the oldest and highest, to GT1, the youngest and lowest) which lie beneath the basalt-covered plateaux of the Kula Volcanic Province. Deciphering the information locked in this fluvial archive requires the construction of a robust geochronology. Fortunately, the Gediz archive provides ample opportunity for age-constraint based upon age estimates derived from basaltic lava flows that repeatedly entered the palaeo-Gediz valley floors. In this paper we present, for the first time, our complete dataset of 40Ar/39Ar age estimates and associated palaeomagnetic measurements. These data, which can be directly related to the underlying fluvial deposits, provide age constraints critical to our understanding of this sequence. The new chronology establishes the onset of Quaternary volcanism at ∼1320ka (MIS42). This volcanism, which is associated with GT6, confirms a pre-MIS42 age for terraces GT11-GT7. Evidence from the colluvial sequences directly overlying these early terraces suggests that they formed in response to hydrological and sediment budget changes forced by climate-driven vegetation change. The cyclic formation of terraces and their timing suggests they represent the obliquity-driven climate changes of the Early Pleistocene. By way of contrast the GT5-GT1 terrace sequence, constrained by a lava flow with an age estimate of ∼1247ka, span the time-interval MIS42 – MIS38 and therefore do not match the frequency of climate change as previously suggested. The onset of volcanism breaks the simple linkage of terracing to climate-driven change. These younger terraces more likely reflect a localized terracing process triggered by base level changes forced by volcanic eruptions and associated reactivation of pre-existing faults, lava dam construction, landsliding and subsequent lava-dammed lake drainage. Establishing a firm stratigraphy and geochronology for the Early Pleistocene archive provides a secure framework for future exploitation of this part of the archive and sets the standard as we begin our work on the Middle-Late Pleistocene sequence. We believe this work forms a benchmark study for detailed Quaternary research in Turkey
    corecore