62 research outputs found

    High Tech, Low Tech, Right Tech

    Get PDF

    Determination of pKa and Hydration Constants for a Series of α-Keto-Carboxylic Acids Using Nuclear Magnetic Resonance Spectrometry

    Get PDF
    The determination of the acid-base dissociation constants, and thus the pKa values, of α-keto acids such as pyruvic acid is complex because of the existence of these acids in their hydrated and nonhydrated or oxo state. Equilibria involved in the hydration and dehydration of the α-keto group of pyruvic acid and three other α-keto acids, 3-methyl-2-oxobutanoic acid, 4-methyl-2-oxopentanoic acid, and 2-oxo-2-phenylacetic acid, were investigated by proton and carbon nuclear magnetic resonance spectrometry, at constant ionic strength, 0.15, and 25°C. Dissociation constants for the oxo (pKaoxo) and hydrated (pKahyd) acids of each compound were estimated from the change in the degree of hydration with changes in pH and directly from the changes in chemical shifts of various hydrogen and carbons nuclei with pH. α-Keto acids showed greater hydration in their acidic forms than their carboxylate forms. The degree of hydration was sensitive to steric and electronic/resonance factors. As expected, the oxo forms of the acids were stronger acids compared with their hydrated analogs, and their dissociation constants were also sensitive to steric and electronic factors

    Prodrugs: Do They Have Advantages in Clinical Practice?

    Get PDF
    This is the published version, also available from the publisher at http://adisonline.com/drugs/Abstract/1985/29050/Prodrugs__Do_They_Have_Advantages_in_Clinical.2.aspxProdrugs are pharmacologically inactive chemical derivatives of a drug molecule that require a transformation within the body in order to release the active drug. They are designed to overcome pharmaceutical and/or pharmacokinetically based problems associated with the parent drug molecule that would otherwise limit the clinical usefulness of the drug. The scientific rationale, based on clinical pharmaceutical and chemical experience, for the design of various currently used prodrugs is presented in this review. The examples presented are by no means comprehensive, but are representative of the different ways in which the prodrug approach has been used to enhance the clinical efficacy of various drug molecules

    Sulfobutyl Ether b-Cyclodextrin (SBE-b-CD) in Eyedrops Improves the Tolerability of a Topically Applied Pilocarpine Prodrug in Rabbits

    Get PDF
    This is the publisher's version, also available electronically from http://dx.doi.org/10.1089/jop.1995.11.95The effects of a novel, modified β-cyclodextrin (SBE4-β-CD; a variably substituted sulfobutyl ether with an average degree of substitution of four) on eye irritation and miotic response of an ophthalmically applied pilocarpine prodrug, O,O'-dipropionyl-(1,4-xylylene) bispilocarpate, in albino rabbits were studied. Compared to the commercial pilocarpine eyedrop solution (163 mM, equivalent to 3.4% pilocarpine), 12 - 24 mM pilocarpine prodrug solutions (equivalent to 0.5 - 1.0% pilocarpine, respectively) decreased peak miotic intensity (Imax) and increased the time to reach peak (tmax), but did not significantly affect values for the area under the miosis versus time curves (AUC), i.e. 12 - 24 mM pilocarpine prodrug appeared to be equivalent to 163 mM pilocarpine. Ocularly applied 12 - 24 mM pilocarpine prodrug solutions, however, were more irritating than a commercial pilocarpine eyedrop solution. Coadministered SBE4-β-CD significantly decreased the eye irritation of the pilocarpine prodrug solutions. Coadministered SBE4-β-CD did not affect the miotic response of prodrug solution when the molar ratio of SBE4-β-CD to prodrug was low. However, increasing the molar ratio of SBE4-β-CD to prodrug decreased the Imax and AUC values. The results show that eye irritation of the pilocarpine prodrug is prevented by levels of SBE4-β-CD that do not affect the apparent ocular absorption of the prodrug

    Reversion of Sulfenamide Prodrugs in the Presence of Free Thiol Containing Proteins

    Get PDF
    The purpose of this work was to study the reaction kinetics between two model sulfenamide prodrugs of linezolid, N-(phenylthio)linezolid and N-((2-ethoxycarbonyl)ethylthio)linezolid, with free thiol containing proteins; human serum albumin (HSA); a constitutively active mutant of theprotein tyrosine phosphatase PRL-1, PRL-1-C170-171S, a model protein; and diluted fresh human plasma. The reaction was followed by HPLC, both for the loss of prodrug and appearance of linezolid, and at different pH values with molar excess of the proteins relative to the prodrugs. Pseudo first-order kinetics were observed. Consistent with earlier findings for the reaction between similar sulfenamides and small molecule thiols, the reaction kinetics appeared to be consistent with thiolate attack at the sulfenamide bond to release the parent drug. The proteins reacted significantly slower on a molar basis than their small molecule counterparts. It appears that proteins such as HSA may play a role in the in vivo conversion of sulfenamide prodrugs to their parent drug

    Southern African Large Telescope Spectroscopy of BL Lacs for the CTA project

    Get PDF
    In the last two decades, very-high-energy gamma-ray astronomy has reached maturity: over 200 sources have been detected, both Galactic and extragalactic, by ground-based experiments. At present, Active Galactic Nuclei (AGN) make up about 40% of the more than 200 sources detected at very high energies with ground-based telescopes, the majority of which are blazars, i.e. their jets are closely aligned with the line of sight to Earth and three quarters of which are classified as high-frequency peaked BL Lac objects. One challenge to studies of the cosmological evolution of BL Lacs is the difficulty of obtaining redshifts from their nearly featureless, continuum-dominated spectra. It is expected that a significant fraction of the AGN to be detected with the future Cherenkov Telescope Array (CTA) observatory will have no spectroscopic redshifts, compromising the reliability of BL Lac population studies, particularly of their cosmic evolution. We started an effort in 2019 to measure the redshifts of a large fraction of the AGN that are likely to be detected with CTA, using the Southern African Large Telescope (SALT). In this contribution, we present two results from an on-going SALT program focused on the determination of BL Lac object redshifts that will be relevant for the CTA observatory

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
    corecore