264 research outputs found

    Calcareous nannoplankton biocoenosis : sediment trap studies in the equatorial Atlantic, central Pacific, and Panama Basin

    Get PDF
    Sediment traps deployed on three moored vertical arrays collected particles at various depths in the equatorial Atlantic (Station E), central Pacific (Station P1), and in the Panama Basin (Station PB1). The calcareous nannoplankton from the <63 ÎĽm size fraction were studied in order to characterize the flux of coccospheres and coccoliths, the taxa present, and their condition of preservation throughout the water column. The average calculated flux of coccospheres ranged from a low value of 24 coccospheres/m2/day in the central Pacific, to an intermediate value of 4725 in the equatorial Atlantic, to a high of 8030 in the Panama Basin. In general, the coccosphere flux decreased with depth at all three sites. Coccolith fluxes and flux profiles were significantly different at each of the three sites. At Station E, the flux decreased regularly with depth but increased sharply at the lowermost trap (724 m above the bottom). The average flux for the entire column was 316 x 106 coccoliths/m2/day. At Station P1, the flux was low in the shallowest two traps and increased markedly in the three deepest traps. This increase is due mainly to a suspected Umbilcosphaera sibogae bloom which occurred shortly before the traps were deployed in September 1978. The highest coccolith flux was recorded in the Station PB1 traps averaging 910 x 10 6 coccoliths/m2/day. The flux profile at this station was essentially constant in the shallowest four traps and decreased almost 59% in the lowermost two traps. The average coccolith carbonate fluxes for the entire columns for the Stations E, P1, and PB1 are, respectively, 2.53, 2.68, and 7.28 mg/m2/day. These fluxes represent minimum values, since coccospheres and coccoliths were also contained in fecal pellets and other particles larger than the size fraction studied (<63 ÎĽm). Scanning electron microscopic examination of the trap samples revealed 56 species belonging to 33 genera of calcareous nannoplankton. Three new species are described and illustrated: Alsphaera spatula n. sp., Umbilcosphaera calvata n. sp., ari;d Umbilcosphaera scituloma n. sp. A census of taxa present, including their relative frequency and state of preservation, is presented together with a photographic atlas of the taxa. Station E is the most diverse with 50 species, and is the best preserved of the three sites. Station PBi the least diverse with 26 more poorly preserved species. In general, the best preserved specimens were observed in the shallowest sample at each of the three sites; diversity and state of preservation diminished with increasing depth

    : Bringing a novel research into the classroom: Carbon sequestration as a new opportunity for science education

    Get PDF
    This poster was presented at the 41st Annual Conference of the Hoosier Association of Science Teachers, Inc. (HASTI), Indianapolis, Ind., February 9-11, 2011.Carbon sequestration technology is an emerging area of research that is rarely presented in the current middle and high school curriculum. This poster complements a concurrent lecture at HASTI (Kevin Ellet and Cristian Medina) and presents three objectives: (1) to introduce the topic of carbon sequestration as a promising area of research for the mitigation of global warming; (2) to show how this technology draws from different science disciplines (e.g. earth science, physics, chemistry, and mathematics) and thus offers new opportunities for science education; (3) to present skills study can learn by studying this technology, such as the use and display of quantitative data and the use of online resources to perform literature searches. This poster presents issues raised in the HASTI position paper “Science Institutions in Indiana: Global Perspectives” (http://www.hasti.org/paper1.html) and encourages discussion on how to maximize science learning in Indiana classrooms

    Halo Star Streams in the Solar Neighborhood

    Full text link
    We have assembled a sample of halo stars in the solar neighborhood to look for halo substructure in velocity and angular momentum space. Our sample includes red giants, RR Lyrae, and red horizontal branch stars within 2.5 kpc of the Sun with [Fe/H] less than -1.0. It was chosen to include stars with accurate distances, space velocities, and metallicities as well as well-quantified errors. We confirm the existence of the streams found by Helmi and coworkers, which we refer to as the H99 streams. These streams have a double-peaked velocity distribution in the z direction. We use the results of modeling of the H99 streams by Helmi and collaborators to test how one might use v_z velocity information and radial velocity information to detect kinematic substructure in the halo. We find that detecting the H99 streams with radial velocities alone would require a large sample. We use the velocity distribution of the H99 streams to estimate their age. From our model of the progenitor of the H99 streams, we determine that it was accreted between 6 and 9 Gyr ago. The H99 streams have [alpha/Fe] abundances similar to other halo stars in the solar neighborhood, suggesting that the gas that formed these stars were enriched mostly by Type II SNe. We have also discovered in angular momentum space two other possible substructures, which we refer to as the retrograde and prograde outliers. The retrograde outliers are likely to be halo substructure, but the prograde outliers are most likely part of the smooth halo. The retrograde outliers have significant structure in the v_phi direction and show a range of [alpha/Fe]. The methods presented in this paper can be used to exploit the kinematic information present in future large databases like RAVE, SDSSII/SEGUE, and Gaia.Comment: 46 pages, 13 figures, and 9 tables. Minor changes to text to match proofed version of the paper. Low resolution figures. High resolution version at http://www.astro.wisc.edu/~kepley/solar_streams.p

    Infrared Multiple-Photon Dissociation Action Spectroscopy of the b(2)(+) Ion from PPG: Evidence of Third Residue Affecting b(2)(+) Fragment Structure

    Get PDF
    Infrared multiple-photon dissociation (IRMPD) action spectroscopy was performed on the b2 + fragment ion from the protonated PPG tripeptide. Comparison of the experimental infrared spectrum with computed spectra for both oxazolone and diketopiperazine structures indicates that the majority of the fragment ion population has an oxazolone structure with the remainder having a diketopiperazine structure. This result is in contrast with a recent study of the IRMPD action spectrum of the PP b2 + fragment ion from PPP, which was found to be nearly 100% diketopiperazine (Martens et al. Int. J. Mass Spectrom. 2015, 377, 179). The diketopiperazine b2 + ion is thermodynamically more stable than the oxazolone but normally requires a trans/cis peptide bond isomerization in the dissociating peptide. Martens et al. showed through IRMPD action spectroscopy that the PPP precursor ion was in a conformation in which the first peptide bond is already in the cis conformation and thus it was energetically favorable to form the thermodynamically-favored diketopiperazine b2 + ion. In the present case, solution-phase NMR spectroscopy and gas-phase IRMPD action spectroscopy show that the PPGprecursor ion has its first amide bond in a trans configuration suggesting that the third residue is playing an important role in both the structure of the peptide and the associated ring-closure barriers for oxazolone and diketopiperazine formation

    Aircraft engine with inter-turbine engine frame supported counter rotating low pressure turbine rotors

    Get PDF
    An aircraft gas turbine engine assembly includes an inter-turbine frame axially located between high and low pressure turbines. Low pressure turbine has counter rotating low pressure inner and outer rotors with low pressure inner and outer shafts which are at least in part rotatably disposed co-axially within a high pressure rotor. Inter-turbine frame includes radially spaced apart radially outer first and inner second structural rings disposed co-axially about a centerline and connected by a plurality of circumferentially spaced apart struts. Forward and aft sump members having forward and aft central bores are fixedly joined to axially spaced apart forward and aft portions of the inter-turbine frame. Low pressure inner and outer rotors are rotatably supported by a second turbine frame bearing mounted in aft central bore of aft sump member. A mount for connecting the engine to an aircraft is located on first structural ring

    Resolving the Formation of Protogalaxies. II. Central Gravitational Collapse

    Get PDF
    Numerous cosmological hydrodynamic studies have addressed the formation of galaxies. Here we choose to study the first stages of galaxy formation, including non-equilibrium atomic primordial gas cooling, gravity and hydrodynamics. Using initial conditions appropriate for the concordance cosmological model of structure formation, we perform two adaptive mesh refinement simulations of ~10^8 M_sun galaxies at high redshift. The calculations resolve the Jeans length at all times with more than 16 cells and capture over 14 orders of magnitude in length scales. In both cases, the dense, 10^5 solar mass, one parsec central regions are found to contract rapidly and have turbulent Mach numbers up to 4. Despite the ever decreasing Jeans length of the isothermal gas, we only find one site of fragmentation during the collapse. However, rotational secular bar instabilities transport angular momentum outwards in the central parsec as the gas continues to collapse and lead to multiple nested unstable fragments with decreasing masses down to sub-Jupiter mass scales. Although these numerical experiments neglect star formation and feedback, they clearly highlight the physics of turbulence in gravitationally collapsing gas. The angular momentum segregation seen in our calculations plays an important role in theories that form supermassive black holes from gaseous collapse.Comment: Replaced with accepted version. To appear in ApJ v681 (July 1

    Fashionably Late? Building up the Milky Way's Inner Halo

    Full text link
    Using a sample of 248 metal-poor stars (RR Lyraes, red giants and RHB stars) which is remarkable for the accuracy of its 6-D kinematical data, we find a new component for the local halo which has an axial ratio c/a ~ 0.2, a similar flattening to the thick disk. It has a small prograde rotation but is supported by velocity anisotropy, and contains more intermediate-metallicity stars (with -1.5 < [Fe/H] < -1.0) than the rest of our sample. We suggest that this component was formed quite late, during or after the formation of the disk. It formed either from the gas that was accreted by the last major mergers experienced by the Galaxy, or by dynamical friction of massive infalling satellite(s) with the halo and possibly the stellar disk or thick disk. The remainder of the stars in our sample exhibit a clumpy distribution in energy and angular momentum, suggesting that the early, chaotic conditions under which the inner halo formed were not violent enough to erase the record of their origins. The clumpy structure suggests that a relatively small number of progenitors were responsible for building up the inner halo, in line with theoretical expectations. We find a difference in mean binding energy between the RR Lyrae variables and the red giants in our sample, suggesting that more of the RR Lyraes in the sample belong to the outer halo, and that the outer halo may be somewhat younger, as first suggested by Searle and Zinn (1978). We also find that the RR Lyrae mean rotation is more negative than the red giants, which is consistent with the recent result of Carollo et al.(2007) that the outer halo has a retrograde rotation and with the difference in kinematics seen between RR Lyraes and BHB stars by Kinman et al.(2007).Comment: 16 pages, 10 figures, this version accepted by Ap

    The Case for the Dual Halo of the Milky Way

    Full text link
    Carollo et al. have recently resolved the stellar population of the Milky Way halo into at least two distinct components, an inner halo and an outer halo. This result has been criticized by Schoenrich et al., who claim that the retrograde signature associated with the outer halo is due to the adoption of faulty distances. We refute this claim, and demonstrate that the Schoenrich et al. photometric distances are themselves flawed because they adopted an incorrect main-sequence absolute magnitude relationship from the work of Ivezi\'c et al. When compared to the recommended relation from Ivezi\'c et al., which is tied to a Milky Way globular cluster distance scale and accounts for age and metallicity effects, the relation adopted by Schoenrich et al. yields up to 18% shorter distances for stars near the main-sequence turnoff (TO). Use of the correct relationship yields agreement between the distances assigned by Carollo et al. and Ivezi\'{c} et al. for low-metallicity dwarfs to within 6-10%. Schoenrich et al. also point out that intermediate-gravity stars (3.5 <= log g <= 4.0) with colors redder than the TO region are likely misclassified, with which we concur. We implement a new procedure to reassign luminosity classifications for the TO stars that require it. New derivations of the rotational behavior demonstrate that the retrograde signature and high velocity dispersion of the outer-halo population remains. We summarize additional lines of evidence for a dual halo, including a test of the retrograde signature based on proper motions alone, and conclude that the preponderance of evidence strongly rejects the single-halo interpretation.Comment: 46 pages, 2 tables, 15 figures, Accepted for publication in the Astrophysical Journa

    Conducting a Supportive Oncology Clinical Trial During the COVID-19 Pandemic: Challenges and Strategies

    Get PDF
    The coronavirus disease 2019 (COVID-19) pandemic resulted in severe interruptions to clinical research worldwide. This global public health crisis required investigators and researchers to rapidly develop and implement new strategies and solutions to mitigate its negative impact on the progress of clinical trials. In this paper, we describe the challenges, strategies, and lessons learned regarding the continuation of a supportive oncology clinical trial during the pandemic. We hope to provide insight into the implementation of clinical trials during a public health emergency to be better prepared for future instances. Trial registration: ClinicalTrials.gov, a service of the US National Institute of Health (NCT03030859). Registered on 22 January 2017

    The Seventh Data Release of the Sloan Digital Sky Survey

    Get PDF
    This paper describes the Seventh Data Release of the Sloan Digital Sky Survey (SDSS), marking the completion of the original goals of the SDSS and the end of the phase known as SDSS-II. It includes 11663 deg^2 of imaging data, with most of the roughly 2000 deg^2 increment over the previous data release lying in regions of low Galactic latitude. The catalog contains five-band photometry for 357 million distinct objects. The survey also includes repeat photometry over 250 deg^2 along the Celestial Equator in the Southern Galactic Cap. A coaddition of these data goes roughly two magnitudes fainter than the main survey. The spectroscopy is now complete over a contiguous area of 7500 deg^2 in the Northern Galactic Cap, closing the gap that was present in previous data releases. There are over 1.6 million spectra in total, including 930,000 galaxies, 120,000 quasars, and 460,000 stars. The data release includes improved stellar photometry at low Galactic latitude. The astrometry has all been recalibrated with the second version of the USNO CCD Astrograph Catalog (UCAC-2), reducing the rms statistical errors at the bright end to 45 milli-arcseconds per coordinate. A systematic error in bright galaxy photometr is less severe than previously reported for the majority of galaxies. Finally, we describe a series of improvements to the spectroscopic reductions, including better flat-fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities. (Abridged)Comment: 20 pages, 10 embedded figures. Accepted to ApJS after minor correction
    • …
    corecore