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+ ion from PPG: Evidence of third residue affecting b2
+ 

fragment structure
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Abstract

Infrared multiple-photon dissociation (IRMPD) action spectroscopy was performed on the b2
+ 

fragment ion from the protonated PPG tripeptide. Comparison of the experimental infrared 

spectrum with computed spectra for both oxazolone and diketopiperazine structures indicates that 

the majority of the fragment ion population has an oxazolone structure with the remainder having 

a diketopiperazine structure. This result is in contrast with a recent study of the IRMPD action 

spectrum of the PP b2
+ fragment ion from PPP, which was found to be nearly 100% 

diketopiperazine (Martens et al. Int. J. Mass Spectrom. 2015, 377, 179). The diketopiperazine b2
+ 

ion is thermodynamically more stable than the oxazolone but normally requires a trans/cis peptide 

bond isomerization in the dissociating peptide. Martens et al. showed through IRMPD action 

spectroscopy that the PPP precursor ion was in a conformation in which the first peptide bond is 

already in the cis conformation and thus it was energetically favorable to form the 

thermodynamically-favored diketopiperazine b2
+ ion. In the present case, solution-phase NMR 

spectroscopy and gas-phase IRMPD action spectroscopy shows that the PPG precursor ion has its 

first amide bond in a trans configuration suggesting that the third residue is playing an important 

role in both the structure of the peptide and the associated ring-closure barriers for oxazolone and 

diketopiperazine formation.

Introduction

With the reliance on mass spectrometry-based proteomics in the identification of proteins in 

biological research, the gas-phase fundamentals of peptide sequencing are of major 

importance. Even with the development of increasingly more sophisticated software and 

instrumentation that has made data collection and processing simpler and more reliable, 
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protein sequence coverage is still greatly affected by the presence or lack of specific amino 

acid residues or combinations of residues within a protein. [1] Much of the work that has 

been focused on improving algorithms has made use of specific amino acid sequence trends 

[2] that are still not fully understood. In order to further these pursuits there must be 

explanations as to the underlying fundamentals of peptide fragmentation mechanisms and 

how specific residues may guide protein coverage challenges.

Collision-induced dissociation produces fragments that form via cleavage at the C-N peptide 

bond along the peptide backbone, where charge can either be retained on the C-terminus to 

form a y-ion or N-terminally to produce a b-ion.[3,4] One focus in peptide fragmentation 

and the underlying mechanisms has centered on the b2
+ ion, as its structure is directly tied to 

the conformation of the peptide backbone of the precursor peptide. Fragmentation may lead 

to either a five-membered oxazolone ring, which retains a trans conformation at the peptide 

bond, or a diketopiperazine six-membered ring structure, which can only form via trans-cis 
isomerization of the peptide bond.[5,6] For most amino acid sequences, the most common 

structure formed for the b2
+ ion is the oxazolone despite the fact that the diketopiperazine is 

typically found to be more thermodynamically stable. The thermodynamic preference for 

trans-amide bonds in peptides is thought to be a contributing factor for this finding. The 

difference in ring closure barriers for the formation of oxazolone and diketopiperazine is 

also likely playing a role in the prevalence of the oxazolone.[7,8]

Proline is well known to significantly affect the secondary structure of peptide and proteins 

and the fragmentation of any peptide in which it resides leading to the “proline effect”,[9–

11] which is preferential cleavage of the peptide bond N-terminal to the proline resulting in 

enhanced intensity of the corresponding y-ion due in part to the increased proton affinity of 

the secondary amine proline.[12,13] Consequently, proline has been part of many peptide 

fragmentation model studies. Proline-containing peptides have been shown to have a higher 

propensity for forming cis peptide bonds at the Pro residue as its barrier to trans/cis 
isomerization of the N-terminally adjacent peptide bond is ~55 kJ/mol compared to the 

average ~80 kJ/mol for the other 19 protein amino acids.[14] The difference in energy 

between the trans and cis isomers of proline-containing peptides is also 8 kJ/mol smaller 

than the difference for other residues.[15] Consequently, the diketopiperazine b2
+ ion is 

observed at greater frequency in model peptides that contain proline in the second position 

presumably because formation of the cis-peptide bond required to facilitate head-to-tail 

cyclization is significantly easier with proline in this position. In previous research, Gucinski 

et al. observed mixtures of oxazolone and diketopiperazine in the b2
+ ion structures of Val-

Pro, Ala-Pro, and Ile-Pro and only the diketopiperazine structure for His-Pro, which stressed 

the importance of the trans/cis isomerization barrier in the formation of the diketopiperazine 

and explained that for His-Pro there was a combined effect of the basic imidazole residue 

from the histidine in the first position and the second position proline contributing to the 

stability of the cis-form of the peptide.[16]

Recent efforts have also dealt with the peptide fragments formed from proline at different 

positions within the peptide backbone and the ways that multiple proline residues within a 

peptide can affect their precursor and fragment structures.[13,17–20] In analysis of 

precursor peptides containing proline, Masson et al., using both spectroscopy and ion 
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mobility, confirmed that GPGG was comprised of a larger kinetically trapped trans-Pro 

population and a smaller cis-Pro population that was found to be more thermodynamically 

stable in the gas-phase. [21]

While much of the work from previous studies has focused on the effect of the second 

position proline and the effect of single proline residues within a peptide, polyproline has 

also been an important biologically relevant sequence feature, most notably due to its 

presence in collagen and in structural motifs of proteins such as beta-helices.[22–24] 

Likewise, polyproline chains, which have been extensively studied both in solution and the 

gas phase for their structural effects, have been observed for their influence in the formation 

of b-ion structures.[25] Most recently Martens et al.[26] have examined the fragment ions of 

small polyproline chains from the tripeptide to hexapeptide. IRMPD action spectroscopy 

was used to confirm ion mobility and modeling studies that found that small polyproline 

peptides adopt structures with the first amide bond in the cis configuration and the remaining 

amide bonds in either cis or trans configuration. [22] For the PPP tripeptide, this study found 

the resulting b2
+ ion to exist as exclusively a diketopiperazine with the IRMPD action 

spectrum of the precursor tripeptide most closely matching that of the cis-cis conformation 

for the two peptide bonds within the peptide.

In this work, we follow up the work from the polyproline PPP and compare the results to the 

tripeptide PPG, which is most relevantly found as part of the sequence of bradykinin, and 

serves to compare the influence of the third residue on the resulting b2
+ ion structure. As 

with the previous experiments performed on polyproline, ion structures were determined via 

IRMPD action spectroscopy and were compared to DFT calculations. Once again, the cis/
trans nature of the amide bonds within the precursor tripeptide are of critical importance in 

addressing the nature of the b2
+ ion structure and from this experiment direct comparisons 

can be made on the influence of the third residue.

Experimental and Theoretical Methods

Infrared multiphoton dissociation spectra were obtained at the Free Electron Laser for 

Infrared eXperiments (FELIX) [27,28] facility in Nijmegen, Netherlands and at the Centre 

Laser Infrarouge d’Orsay in Orsay, France.[29,30]

a. FELIX

A dilute solution (0.1 μM) of PPG in slightly acidified acetonitrile (0.1% formic acid) was 

directly infused into a modified Bruker Amazon ion trap mass spectrometer coupled to the 

FELIX beamline. The protonated peptide precursor ions [M+H]+ (m/z 270) were generated 

from electrospray ionization, mass isolated and allowed to undergo collision-induced 

dissociation (CID) with the background helium gas at a collision energy chosen to optimize 

the formation of the b2
+ product ion. A representative collision-induced dissociation 

spectrum for PPG+H+ is shown in Figure S1 of Supporting Information. As shown in the 

spectrum, the major fragment is the “proline effect” y2
+ ion at m/z 173, but there was 

sufficient intensity of the b2
+ ion at m/z 195 for IRMPD action spectroscopy studies. The PP 

b2
+ fragment ions are re-isolated and then irradiated with infrared radiation from 900 to 

2000 cm−1 from the free-electron laser. The infrared radiation comes in 5 μs macro-pulses 
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with an approximate energy of 30–40 mJ/pulse and a bandwidth of 0.4% of the center 

frequency. IRMPD action spectroscopy of the b2
+ ion gives an a2

+ fragment at m/z 167 and 

three internal proline-derived ions at m/z 126, 98, and 70. An IRMPD action spectrum for 

b2
+ is generated by plotting the dissociation yield for product ion formation Σ (product 

ions)/Σ (product ions + un-reacted precursor) as a function of wavelength. The wavelength 

scale is calibrated using a grating spectrometer and the dissociation yield is linearly 

corrected for variations in laser power.

b. CLIO

Similar procedures were employed to obtain IRMPD action spectra at the CLIO facility. A 

dilute solution (10 μM) of PPG in slightly acidified acetonitrile (0.1% formic acid) was 

directly infused into a modified Bruker Esquire ion trap mass spectrometer coupled to the 

CLIO free electron laser source. Parent ion isolation, collision-induced dissociation, and b2
+ 

product re-isolation procedures are the same as those in the FELIX laboratory. The collision-

induced dissociation spectrum (not shown) for PPG+H+ was virtually identical to the 

spectrum obtained at FELIX, with a dominant y2
+ “proline effect” fragment ion and a minor 

b2
+ ion. The collision energy was varying in order to maximize the intensity of b2+. The 

FEL output consists of 8 μs macropulses at 25 Hz. The macropulse energy is ca. 20 mJ. The 

laser wavelength is varied in ca. 6 cm−1 steps and the laser bandwidth is about 0.3–0.5% of 

the center wavelength. IRMPD action spectroscopy of the b2
+ ion gives the same four 

fragment ions as found in FELIX. The wavelength scale is calibrated by passing part of the 

beam through a polystyrene film and comparing peaks to the known IR spectrum in the 

region between 1000 and 2000 cm−1. The dissociation yield is linearly corrected for 

variations in laser power.

c. Theoretical methods

Low energy conformations for the PPG+H+ precursor, and both the protonated oxazolone 

and protonated diketopiperazine forms of PP b2
+ were generated using the GMMX 

conformer searching routine in PCModel 9.3. All conformers within 60 kJ/mol of the global 

minimum structure were kept. Unique conformers from the GMMX search were used as 

starting structures for increasingly larger calculations. Geometries, zero-point energies, 

enthalpy- and free-energy-corrections, and harmonic vibrational frequencies were ultimately 

calculated at the B3LYP/6-31+G(d,p) level of theory. Single-point energies at the B3LYP/

6-311++G(d,p) level of theory were carried out at the double zeta geometry. Harmonic 

vibrational frequencies for PP b2
+ were scaled by 0.965 and those for PPG+H+ were scaled 

by 0.970. Stick spectra were broadened by a 20 cm−1 baseline-width Gaussian function.

Results and Discussion

Collision-induced dissociation of the protonated peptide [PPG+H+] gives a peak with m/z 

195 that corresponds to b2
+. This fragment ion was isolated and allowed to interact with 

tunable infrared radiation from the FEL. IRMPD action spectra for PP b2
+ ion from CLIO 

and FELIX are shown in Figure 1a and 1b, respectively and clearly show an intense peak 

near 1925 cm−1 that is diagnostic for an oxazolone structure.[31,32] Computed infrared 

spectra for the lowest energy oxazolone and diketopiperazine conformers are also shown in 
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Figure 1c and 1d, respectively. Additional peaks in the experimental spectrum near 1600, 

1282, and 1100 cm−1 also match the oxazolone spectrum. Smaller peaks near 1630 (CLIO), 

1700, and 1400 cm−1 indicate that the gas-phase ion population contains a small amount of 

the diketopiperazine isomer as well.

Table S1 shows the relative energetics of the eight diketopiperazine structures and six 

oxazolone conformers found in the conformational search. The conformer with the lowest 

free-energy for PP b2
+ is a diketopiperazine and is shown in Figure 2. It has both proline 

rings puckered in the same direction and the ionizing proton anti to the ring nitrogen. Higher 

energy conformers arise from different ring puckering schemes and/or a syn arrangement for 

the ionizing proton with respect to the ring nitrogen atom (Figure 2). The different ring 

puckering schemes have a modest effect on the computed spectra in this region, whereas a 

syn arrangement for the ionizing proton with respect to the ring nitrogen atom shifts the 

peak near 1682 cm−1 to the red. For comparison, the computed spectrum of the lowest-

energy conformer with a syn-OH is also shown in Figure 1e. The four diketopiperazine 

conformers with the lowest free energies should account for > 95% of the diketopiperazine 

population at 298K.

The lowest energy protonated oxazolone structure lies ca. 70 kJ/mol higher in energy than 

the lowest energy diketopiperazine and is shown in Figure 3. Due to the cyclic side chain of 

proline, the oxazolone structure is bicyclic and contains a formally positive nitrogen atom in 

the ring system. Higher energy conformers arise from different orientations of the external 

proline ring with respect to the oxazolone rings as well as from differences in the proline 

ring puckering. The conformers with the two lowest free energies should constitute > 95% of 

the oxazolone Boltzmann population at 298 K. The diagnostic oxazolone peaks near 1925 

and 1600 cm−1 are in virtually the same position for both of these conformers.

It is clear from the experimental spectra (Figures 1a and 1b) that the majority of the 

conformers under both of our experimental conditions are oxazolones. This result is in stark 

contrast with previous results for the PP b2
+ fragment ion from PPP that was shown to be 

nearly 100% diketopiperazine.[26] In that study the protonated [PPP+H+] precursor was 

found to be in the cis/cis configuration, which is primed for diketopiperazine formation. A 

collision-induced dissociation spectrum for PPP+H+ is shown in Figure S2 of Supporting 

Information. As with PPG+H+, the dominant fragment ion is the “proline” effect y2
+ ion. In 

this case, the b2
+ is more intense than in PPG+H+ and is of ample intensity for further 

IRMPD action spectroscopy studies.

In order to ascertain the conformation of the PPG+H+ precursor peptides, we obtained a 

solution-phase (50% D2O:50% CD3CN) NMR spectrum of the neutral PPG peptide. The 

spectrum is shown in Figure S3 of Supporting Information. Analysis of the Cα hydrogens 

indicates that the neutral peptide is a mixture of isomers, with the dominant structure being 

the trans/trans isomer (ca. 5:1 of trans/trans: trans:cis). Peaks were assigned based on 1D-

selective TOCSY experiments, and the conformations were established on the basis of 1D-

selective NOESY experiments.[33,34] We were also able to obtain the gas-phase IRMPD 

action spectrum of PPG+H+ precursor ion at the FELIX facility as shown in Figure 4. Also 

shown in Figure 4 are calculated scaled harmonic spectra at the B3LYP/6-31+G(d,p) level of 
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theory for the lowest free energy conformers of the 4 different isomers of PPG+H+ (cis/
trans, trans/trans, cis/cis, and trans/cis). Figure 5 shows the lowest energy conformers for 

these isomers and Table S2 gives relative 298K free energy values at the B3LYP/6-311+

+G(d,p)//B3LYP/6-31+G(d) for all isomers found in our conformational search. The 

calculations predict that the lowest-energy isomer is cis/trans, with trans/trans isomers lying 

on the order of 13 kJ/mol higher in energy. The lowest energy cis/cis and trans/cis structures 

are on the order of 25 and 32 kJ/mol higher in energy at the B3LYP/6-31+G(d,) level of 

theory.

An analysis of the IRMPD action spectrum shows that the experimental spectrum matches 

best with the trans/trans isomer which means that the much of the gas-phase peptide 

population is being kinetically trapped in the favored solution-phase structure during the 

electrospray process. Given the intensity of the peak in the experimental spectrum near 1505 

cm−1 we can conclude that the gas-phase sample does not contain significant amounts of 

trans/cis or cis/cis isomers as the calculated spectra have not significant peaks in this region 

of the spectrum. Thus the minor isomer in solution is absent from the spectrum. 

Additionally, the intensity in the experimental spectrum around 1730 cm−1 indicates that the 

cis/trans isomer is present in the sample as at least a minor component. The fact that the b2
+ 

ion population contains mostly oxazolone with a small amount of diketopiperazine is 

consistent with a precursor mixture of mostly trans/trans (giving the oxazolone) with a sub-

population of cis/trans PPG+H+ precursor (giving the diketopiperazine). An alternative 

explanation for the b2
+ structure distribution is that the barrier to trans/cis isomerization is 

below that of either of the ring-closure barriers for product formation and that the 

distribution arises from the Curtin-Hammet principle.[35,36] This mechanism would be in 

agreement with calculations by Armentrout [8] on protonated diglycine that show that the 

rate limiting step is ring closure to the final product and with experimental data of Morrison 

and Wysocki [37] that show that the third residue of a peptide can dramatically influence the 

b2
+ structure. A full computational study for these peptides and those containing 

dimethylproline, which locks peptide bonds into cis conformations, including the calculation 

of the relevant barrier heights for trans-cis isomerization and product formation is underway.

Conclusions

Collision-induced dissociation of protonated PPG tripeptide gives a mixture of b2
+ ions that 

are predominantly oxazolone. This is in contrast with the population of b2
+ ions from CID of 

protonated PPP. Clearly, the fragmentation mechanism for b2
+ ion formation from small 

peptides depends not only on the first two residues that make up the nascent b2
+ ion but also 

on the identity of trailing residues that affect the structure of the peptide and the relevant 

barriers for dissociation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Experimental IRMPD action spectrum for b2

+ ion from PPG obtained at a) CLIO facility 

and b) FELIX. Computed spectra for c) lowest energy oxazolone conformer, d) lowest 

energy diketopiperazine structure with anti-OH, and e) lowest energy diketopiperazine 

structure with syn-OH.
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Figure 2. 
Low-energy conformers for diketopiperazine PP b2

+ ions. Numbers are ΔG values in kJ/mol 

at 298 K relative to the lowest energy diketopiperazine conformer.
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Figure 3. 
Low-energy conformers for oxazolone PP b2

+ ions. Numbers are ΔG values in kJ/mol at 298 

K relative to the lowest energy oxazolone conformer, refer to Table S1 for ΔG values relative 

to the lowest energy diketopiperazine conformer.
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Figure 4. 
a) Experimental IRMPD action spectrum for PPG+H+ precursor ion obtained at a) FELIX. 

Computed spectra for the lowest energy b) cis/trans isomer, c) trans/trans isomer, d) cis/cis 
isomer, and e) trans/cis isomer of PPG+H+.
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Figure 5. 
Lowest-energy conformers for the a) cis/trans isomer, b) trans/trans isomer, c) cis/cis isomer, 

and d) trans/cis isomer of PPG+H+. Numbers are ΔG values in kJ/mol at 298 K relative to 

the lowest energy conformer. Blue and red lines indicate the cis/trans configuration of the 

first and second peptide bonds.
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