1,960 research outputs found

    Air-flow sensitive hairs: boundary layers in oscillatory flows around arthropod appendages

    Get PDF
    The aim of this work is to characterize the boundary layer over small appendages in insects in longitudinal and transverse oscillatory flows. The problem of immediate interest is the early warning system in crickets perceiving flying predators using air-flow-sensitive hairs on cerci, two long appendages at their rear. We studied both types of oscillatory flows around small cylinders using stroboscopic micro-particle image velocimetry as a function of flow velocity and frequency. Theoretical predictions are well fulfilled for both longitudinal and transverse flows. Transverse flow leads to higher velocities than longitudinal flow in the boundary layer over a large range of angles between flow and cylinder. The strong spatial heterogeneity of flow velocities around filiform-shaped appendages is a rich source of information for different flow-sensing animals. Our results suggest that crickets could perceive the direction of incoming danger by having air-flow-sensitive hairs positioned around their entire cerci. Implications for biomimetic flow-sensing MEMS are also presented

    Infra-Red Asymptotic Dynamics of Gauge Invariant Charged Fields: QED versus QCD

    Get PDF
    The freedom one has in constructing locally gauge invariant charged fields in gauge theories is analyzed in full detail and exploited to construct, in QED, an electron field whose two-point function W(p), up to the fourth order in the coupling constant, is normalized with on-shell normalization conditions and is, nonetheless, infra-red finite; as a consequence the radiative corrections vanish on the mass shell p2=ÎĽ2p^2=\mu^2 and the free field singularity is dominant, although, in contrast to quantum field theories with mass gap, the eigenvalue ÎĽ2\mu^2 of the mass operator is not isolated. The same construction, carried out for the quark in QCD, is not sufficient for cancellation of infra-red divergences to take place in the fourth order. The latter divergences, however, satisfy a simple factorization equation. We speculate on the scenario that could be drawn about infra-red asymptotic dynamics of QCD, should this factorization equation be true in any order of perturbation theory.Comment: 30 pages, RevTex, 8 figures included using graphic

    Molecular basis of essential fructosuria: molecular cloning and mutational analysis of human ketohexokinase (fructokinase)

    Get PDF
    Essential fructosuria is one of the oldest known inborn errors of metabolism. It is a benign condition which is believed to result from deficiency of hepatic fructokinase (ketohexokinase, KHK, E.C.2.7.1.3). This enzyme catalyses the first step of metabolism of dietary fructose, conversion of fructose to fructose-1-phosphate. Despite the early recognition of this disorder, the primary structure of human KHK and the molecular basis of essential fructosuria have not been previously defined. In this report, the isolation and sequencing of full-length cDNA clones encoding human ketohexokinase are described. Alternative mRNA species and alternative KHK isozymes are produced by alternative polyadenylation and splicing of the KHK gene. The KHK proteins show a high level of sequence conservation relative to rat KHK. Direct evidence that mutation of the KHK structural gene is the cause of essential fructosuria was also obtained. In a well-characterized family, in which three of eight siblings have fructosurla, all affected individuals are compound heterozygotes for two mutations Gly40Arg and Ala43Thr. Both mutations result from G→A transitions, and each alters the same conserved region of the KHK protein. Neither mutation was seen in a sample of 52 unrelated control individuals. An additional conservative amino acid change (Val49lle) was present on the KHK allele bearing Ala43Th

    Blood volume and orthostatic responses of men and women to a 13-day bedrest

    Get PDF
    Changes in blood volume during space flight are thought to contribute to decrements in postflight orthostatic function. The purpose of this study was to determine whether gender affects red cell mass and plasma volume during a short exposure to simulated microgravity, and whether gender differences in orthostatic tolerance ensure. Methods: Ten men (31.5 plus or minus 5.2 years, STD) and eleven normally menstruating women (33.3) plus or minus 6.0 STD) underwent 13 days of 6 degree head-down bedrest. Plasma volume (Iodine 125 labeled human serum albumin) and red cell mass (Carbon 51 labeled red blood cells) were measured before bedrest and on bedrest day 13. On the same days, orthostatic tolerance (OT) was determined as the maximal pressure during a presyncopalimited lower body negative pressure test. Results: Plasma volume (PV) and red cell mass (RCM) decreased in both groups with a greater PV decrease (P less than 0.05) in men (6.3 plus or minus 0.7 ml/kg) than in women (4.1 plus or minus 0.6 ml/kg). Decreases in red cell mass were similar (1.7 plus or minus 0.2 ml/kg in men and 1.7 plus or minus 0.2 ml/kg in women). OT was similar for men and women before bedrest (minus 78 plus or minus 6 mmHg in men versus minus 70 plus or minus 4 mmHg in women) and decreased by a similar degree (by an average of 11 mmHg in both groups) after bedrest. The changes in OT did not correlate with changes in plasma volume during bedrest (r(exp 2) = 0.002). Conclusion: Thus, although female hormones may protect PV during bedrest, they do no appear to offer an advantage in terms of loss of orthostatic function

    Continuity of the four-point function of massive Ď•44\phi_4^4-theory above threshold

    Full text link
    In this paper we prove that the four-point function of massive \vp_4^4-theory is continuous as a function of its independent external momenta when posing the renormalization condition for the (physical) mass on-shell. The proof is based on integral representations derived inductively from the perturbative flow equations of the renormalization group. It closes a longstanding loophole in rigorous renormalization theory in so far as it shows the feasibility of a physical definition of the renormalized coupling.Comment: 23 pages; to appear in Rev. Math. Physics few corrections, two explanatory paragraphs adde

    Elaborated Modeling of Synchrotron Motion in Vlasov-Fokker-Planck Solvers

    Get PDF
    Solving the Vlasov-Fokker-Planck equation is a well-tested approach to simulate dynamics of electron bunches self-interacting with their own wake-field. Typical implementations model the dynamics of a charge density in a damped harmonic oscillator, with a small perturbation due to collective effects. This description imposes some limits to the applicability: Because after a certain simulation time coherent synchrotron motion will be damped down, effectively only the incoherent motion is described. Furthermore – even though computed - the tune spread is typically masked by the use of a charge density instead of individual particles. As a consequence, some effects are not reproduced. In this contribution, we present methods that allow to consider single-particle motion, coherent synchrotron oscillations, non-linearities of the accelerating voltage, higher orders of the momentum compaction factor, as well as modulations of the accelerating voltage. We also provide exemplary studies – based on the KIT storage ring KARA (KArlsruhe Research Accelerator) - to show the potentiality of the methods

    Proof of a mass singularity free property in high temperature QCD

    Get PDF
    It is shown that three series of diagrams entering the calculation of some hot QCDQCD process, are mass (or collinear) singularity free, indeed. This generalizes a result which was recently established up to the third non trivial order of (thermal) Perturbation Theory.Comment: 40 pages, 3 figures. to be published in J. Math. Phys. no. 44, 200
    • …
    corecore