2022

q—

LEFM* is agnostic to geometrical nonlinearities arising at atomistic crack tips

Tarakeshwar Lakshmipathy'*, Paul Steinmann?, Erik Bitzek?

Abstract

Various fields such as mechanical engineering, materials science, etc., have seen a widespread use of linear elastic fracture me-
chanics (LEFM) at the continuum scale. LEFM is also routinely applied to the atomic scale. However, its applicability at this
scale remains less well studied, with most studies focusing on non-linear elastic effects. Using a harmonic ”snapping spring”
nearest-neighbor potential which provides the closest match to LEFM on a discrete lattice, we show that the discrete nature of an
atomic lattice leads to deviations from the LEFM displacement field during energy minimization. We propose that these deviations
O)can be ascribed to geometrical nonlinearities since the material does not have a nonlinear elastic response prior to bond breaking.
— We demonstrate that crack advance and the critical stress intensity factor in an incremental loading scenario is governed by the
< collectively loaded region, and can not be determined analytically from the properties (max. elongation, max. sustained force, etc.)

of the stressed crack tip bond alone.
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1. Introduction

Linear elastic fracture mechanics (LEFM) has a long history
in structural integrity and the design of fracture-resistant ma-
terials, and is well established in literature [1l]. The roots of
LEFM trace back to the works of Inglis [2]] who introduced the
concept of a stress concentration factor to describe the stresses
due to an elliptical hole with respect to an applied macroscopic
stress. Later, Griffith [3] assumed a linear elastic material to
establish a thermodynamic criterion for perfectly brittle crack
advance. According to this model, a crack would propagate
when the the stored elastic energy released by crack propaga-
tion exceeds the energy required to create two new crack sur-
faces. The energy release rate G, which can be defined as the
rate of change in potential energy with crack area, can then be
related to Griffith’s criterion as follows:

G <Gg =2y, ey

where Gg is Griffith’s theoretical resistance of the material that
needs to be overcome to create two crack new surfaces, with
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v being their surface energy. Williams [4] and Irwin [3]] then
used a stress-based approach to establish the concept of a stress
intensity factor (SIF). This factor K is a single loading parame-
ter that describes the scaling of the amplitude of the stress field
around the crack. The stress intensity factor is related to the
energy release rate as follows:

K = VGE*, )

where E* is the orientation dependent elastic modulus. Ap-
plying the Griffith criterion to the stress-based approach using
equations (I) and (2), we obtain the theoretical SIF K¢ required

for crack advance:
Ko = \GGE™. 3)

In atomistic simulations of fracture [6) [7], a SIF-controlled
loading approach is usually employed by displacing atoms ac-
cording to the linear elastic anisotropic solution in plane strain
in mode I [8]]. The LEFM displacement field is given by:

Ky V2r
T

KiV2r
\r

where K] is the stress intensity factor under mode I loading and
r is the distance of the atom from the mathematical center of
the crack tip. The angular distribution functions f,(6) and f,(6)
are defined by the angle to the cleavage plane 6 and the elastic
constants for a given crystallographic orientation. Although a
crack is initially inserted by displacing all atoms, it is only the
boundary layers that are kept fixed during the simulations while

uy(r,0) =

(fx(0)), “

uy(r,0) = (5(6)), &)
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the remaining atoms are allowed to relax to their minimum en-
ergy configuration (see, e.g.,[6]). Furthermore, an explicit fail-
ure criterion is not required in atomistic simulations. Rather,
the fracture toughness K. is a result of these simulations. It
can be considered to be reached when, as a result of an energy
minimization under the applied K. displacement field, the sep-
aration distance of the crack tip atom pair exceeds some critical
value [9,[10].

As the name suggests, a key assumption in LEFM is that the
material exhibits linear elastic behavior. Deviations from linear
elastic behavior could be due to material nonlinearities, geo-
metrical nonlinearities and time-history dependence [11]. Ma-
terial nonlinearities comprise of, for example, nonlinear elas-
tic response or plasticity. Geometrical nonlinearities are due to
large deformations where an explicit distinction is to be made
between reference and deformed configurations [12]. Devia-
tions due to time-history dependence are usually ascribed to
viscoelasticity, creep and fatigue [11]].

Previous works with material-specific models such as [13]
10] have shown that there is generally a good agreement be-
tween LEFM and atomistics as far as stresses are concerned.
The atomic stresses match LEFM away from the crack tip and
close to the boundaries where the LEFM displacement field is
imposed throughout the simulations. Deviations arise only be-
low about 1 nm distance from the crack tip and resolve to finite
values. However, these deviations do not invalidate the loading
procedure in the simulations since the accompanying changes
in energy are localized close to the crack tip [6]. Such devia-
tions are gerenerally ascribed to material nonlinearities, without
explicitly taking into account possible other nonlinearities.

It should also be noted that the determination of atomic
stresses at the crack tip is non-trivial. For example, the study by
Moller et al. [10] observed that the Virial method [[14] used to
measure stresses led to deviations at the crack tip due to atomic
volumes being ill-defined at surfaces.

The phenomenon of lattice trapping (which can be general-
ized to bond trapping for interfaces [[15]) represents a deviation
for atomic structures from Griffith’s energy based approach to
LEFM (see [16]). The discrete nature of a lattice prevents the
continuous increase of crack surfaces by a continuously prop-
agating crack. Instead, cracks propagate by breaking individ-
ual atomic bonds. This leads to cracks remaining stable above
and below the Griffith stress intensity factor Kg during loading
and unloading, respectively. While the phenomenon of bond
trapping is well established in the literature (see, e.g, the ref-
erences in [7]]), the influence of geometrical nonlinearities on
lattice trapping have not yet been studied in detail.

In this study, we provide an example to quantify deviations
from the SIF-controlled LEFM displacement field arising from
geometric nonlinearities and their contribution to the lattice
trapping phenomenon. As a consequence, we show that fracture
toughness cannot be analytically determined based on knowl-
edge of maximal bond length of crack tip bonds alone. Towards
this end, we use a harmonic potential with a local cutoff to cir-
cumvent nonlinear elastic response prior to cleavage, similar to
studies such as [9, [L17]. The use of such a potential between
atoms is analogous to a “network of springs” model, which is

Table 1: Summary of parameters and relevant properties of the harmonic poten-
tial used in this study (pair potential at equilibrium Uiy, equilibrium distance
dy, cutoff distance d., cohesive energy Eqh, lattice constant a, surface energy
of (hkl) plane y(hkl)), elastic constants C;; (cubic symmetry)).

Parameters / Properties Value
Umin (CV) 1.00
do (A) 2.54
de (A) 3.07
Econ (€V) -6.00
a(A) 3.60
¥(100) (J/m?) 4.95
C1 (GPa) 642.92
C1, (GPa) 321.59
Cu4 (GPa) 321.59

widely used in the study of fracture mechanics [18]].

2. Method

The pair force of the harmonic ”snapping spring” potential
was given by:

2U min .
———5ld—dol, ifd<d.
[do — d.] (6)

0, otherwise

Fd) =

where —U.y,, is the potential energy at the equilibrium distance
dy, d. is the cutoff distance, and d is the inter-atomic sepa-
ration distance. This potential leads to a face-centered-cubic
(fce) equilibrium structure. The parameters and potential prop-
erties are listed in table Il The cutoff of the potential has to
be small enough to be strictly local so that linearity is ensured
and that cleavage of bonds at the crack tip can take place [17]].
Consequently, the critical separation distance between atoms
for cleavage coincides with the cutoff d.. The local nature
of the potential also results in the simulations not displaying
any surface related phenomena, which are not accounted for
in LEFM, making this potential suitable for comparisons with
LEFM. Two different parameterization of this harmonic poten-
tial have been investigated and resulted in comparable conclu-
sions (the details and results of the second potential are in[Ap-]
[pendix Aland[Appendix C).

Cylindrical pacman-like configurations with radii of 300 A
and depths of about 10 A were used, see Fig. m Without re-
moving atoms or deleting bonds, LEFM near crack tip solu-
tions according to equations (@) and (5) were usoed to create and
load cracks. A boundary region of about 15 A thickness was
kept fixed throughout the simulations, whereas the remaining
domain was allowed to relax. The sizes of the configurations
were large enough to converge to the infinite limit assumed by
LEFM with respect to Ki. (see [Appendix B)). Hence, flexible
boundary conditions as detailed in [19] were not required. In-
stead, the LEFM displacement field and boundaries were al-
ways centered on the geometrical center of the configurations,




similar to works such as [10} 20} 21]]. The crack systems (char-
acterized by crack plane and crack front direction) studied were
(100)[001] and (100)[011].

Fixed layers
~154

Geometrical
center of
configuration

Normal to
crack plane

L» Crack propagation direction

Crack front direction

Figure 1: Schematic of the simulation setups used. In this study, the geometri-
cal center of the configurations coincided with the mathematical center of the
LEFM displacement field in all simulations. Red atoms are free to move, blue
atoms are fixed.

The initial prescriptions of the displacement field were done
at a load where the cracks were stable at the center of the con-
figurations (Kj,), see table for the values of K and Kj,. The
configurations were then minimized using FIRE [22]]. Two pro-
cedures were used in this study to impose further loads: in-
cremental and total loading. In incremental loading, further
loads AK in the form of prescribed displacements Au accord-
ing to equations (@) and (5) were incrementally applied on all
the atoms in the relaxed configuration of the previous load in-
crement until the crack tip bonds underwent cleavage (d > d.).
The fracture toughness determined that way are referred to by
Kligc. In the case of total loading, displacements u# according
to the total desired load Kj, + AK were directly applied to the
initial, uncracked cylinder. The sample were then relaxed and
the procedure was repeated, until the separation distance of the
crack tip atom pair exceeded d.. The fracture toughness deter-
mined by total loading is K;".

All calculations were performed with LAMMPS [23] and
analysis was done with the help of OVITO [24].

3. Results and Discussion

Prior to cleavage of crack tip bonds, both crack systems with
both loading procedures show deviations from the LEFM pre-
scribed positions due to relaxation, see Fig. 2] These deviating
displacements indicate inconsistency with the linear behavior
assumed by LEFM. Since the elastic response of the material
before cleavage is linear, these deviations can only be ascribed
to geometrical nonlinearities. In other words, collective relax-
ation processes ahead of the crack tip lead to changes in geome-
try of the crack tip neighborhood which is no longer compatible
with linear elasticity.

Crack system (100)[001]

»0 » b‘N
%4}‘%‘0:

‘ﬁdﬁuum
‘4;'}4;'4 ‘/MP"AWW

x [010]

y [100]

2[001]

Crack system (100)[011]
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Figure 2: Positions of atoms around crack tips after relaxation at Kj,. The blue
arrows show the (magnified) difference between the atom positions according to
LEFM (Egs. @ and @) and after relaxation. Similar deviating displacements
are observed at all higher loads with both loading procedures. The crack tip
atom pair is circled and highlighted by green atoms.

Although these deviating displacements seem minor, they
have a significant impact on the separation distances of the
crack tip atom pairs. It can be seen from Fig. [3 that large de-
viations exist in both crack systems between the separation dis-
tance according to the atomic positions determined by LEFM
and the atomistic response, independent of loading procedure.
In the case of total loading, the crack tip bonds, however, cleave
in accordance with the analytical LEFM equations (@) and ().
This is due to the atoms being positioned by the LEFM dis-
placement field so that the crack tip bonds are already cleaved
at Ki%, and the bonds do not heal during minimization. Un-
til then, the separation distance d; remains nearly identical for
both loading procedures. In the case of incremental loading, the
deviations add up and lead to fracture toughness values that are
> 30% larger than the corresponding analytically determined
LEFM values.

The material shows high lattice trapping as evidenced by
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Figure 3: Separation distance of crack tip atoms (see Fig[Z) as a function of K;
according to LEFM and the two loading procedures.

KI‘EC >> Kg. This is a consequence of its local and linear na-
ture [17, 9]. This inherent increase in the critical SIF is rep-
resented in the total loading procedure. From table |2} it can
be seen that critical SIFs with total loading K;o' are substan-
tially larger (> 70%) than values based on the Griffith criterion
Ki. However, the critical SIFs with incremental loading Kﬁ;‘c
are even larger due to the deviating displacements from relax-
ation. Thus, for incremental loading, geometric nonlinearities
significantly influence lattice trapping.

However, material-specific, more realistic material models
show much lower lattice trapping, see, e.g., the work by Hire-
math et al. [25]] on cracks in Tungsten under incremental load-
ing. There it was found with a newly developed, DFT fitted,
modified embedded atom method potential that the value of
Kli‘c1C was just 2% larger than Kg ((001)[1-10] crack system).

They also published the traction-separation curves. The po-
sition of the peak of these curves () can be considered for the
critical separation distance (d. = d(0) + 0) for a vertically
orientated crack tip bond (as is the case in this orientation).
One can then use the LEFM equations () and (5) to determine
Ki.(d = d.). Withé = 0.5 A and the values of d(010) and the elas-
tic constant for the potential, see [25], the so calculated K is

however about 125% larger than the measured one. This again
highlights that using only the critical bond separation distance
is not sufficient to calculate the fracture toughness with LEFM.
In this example, however, not only geometrical nonlinearities
are at play, but also material nonlinearities and surface effects
like surface relaxation.

Finally, the two loading procedures are compared. As noted
by Sinclair [17], the transition from a pristine crystal to a frac-
tured surface will not be sudden. Hence, the fracture tough-
ness values from total loading may not be realistic (when used
with realistic materials). The two loading procedures start at
the same Kj,, at which the corresponding structures have iden-
tical total energies. As shown in Fig. {i] with further loading the
energies deviate from each other, however, at KI‘? the difference
is less than 1 meV per atom in both crack systems. This energy
difference seems relatively low, however, the structural differ-
ence are located close to the crack tip and can therefore play
an important role. If fracture is assumed to be sufficiently slow
so that atoms have time to find their minimum energy config-
uration, the procedure that provides the lowest energies for the
given load K7 would have to be considered.

4. Conclusions

The results presented in this work show that geometrical non-
linearities cause deviations from LEFM even if the material has
a linear elastic response prior to bond cleavage. In the case of
incremental loading, which can be assumed to be relevant in the
determination of crack initiation toughness, geometrical non-
linearities also influence lattice trapping. Real materials further
deviate from LEFM due to their nonlinear elastic responses and
surface effects. We show, however, that even in the absence of
such complications, fracture toughness cannot be re-conciliated
with LEFM by using the critical separation distance of the crack
tip atom pair in an incremental loading procedure. Rather, frac-
ture is a collective phenomenon at the atomic scale, even with
purely local and linear interactions. Therefore actual fracture
simulations have to be performed to determine fracture tough-
ness.

Table 2: Comparisons of initial load (Kjy), critical stress intensity factor from
Griffith’s criterion (K), critical stress intensity factors from incremental load-
ing (Klig"), critical stress intensity factors from and total loading (K}‘C"). All
values are in MPa v/m.

(100)[001] (100)[011]
Kin 1.70 1.28
K 1.39 1.42
Kine 3.15 4.54
K 2.36 2.64
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Figure 4: Potential energy per atom as a function of Kj. The plots are focused
around the loads at which the crack tip bonds underwent cleavage with the total
loading procedure (K}2").

Appendix A. Potentials

The formulation of the potentials is given by

Umin
[do - d.]?
where, V is the effective pair potential, with —U,,;, being the
potential at the equilibrium distance d, d. being the cutoff dis-

tance, and d being the inter-atomic separation distance. The
pair force is then given by the first derivative of (A.T):

2'[Jmin
[dO - dc]2
Two potentials labelled ”Harmonic-A” and “Harmonic-B”

were used, with the properties listed in table [T} The results of
Harmonic-A are presented in the main manuscript. The results

of “Harmonic-B” are in section |[Appendix C

V(d) = |1d = do)® - [de — do?], (A1)

F(d) = [d - dy]. (A2)

Appendix B. Tests of setup and simulation parameters

Convergence of KE‘C with respect to configuration radius R
was tested with Harmonic-A using the incremental loading pro-

Table A.3: Summary of parameters and relevant properties of the harmonic
potentials (pair potential at equilibrium Uy, equilibrium distance dp, cutoft
distance d., cohesive energy E.oh, lattice constant a, surface energy of (hkl)
plane y(hkl)), elastic constants C;; (cubic symmetry)).

Parameters / Harmonic-A Harmonic-B
Properties
Upin (V) 1.00 1.00
do (A) 2.54 2.54
d. (A) 3.07 2.90
Econ (€V) -6.00 -6.00
a(A) 3.597 3.597
¥(100) (J/m?) 4.95 495
Ci1 (GPa) 642.92 1401.76
C1» (GPa) 321.59 700.95
Cus (GPa) 321.59 700.79

cedure (see table . It can be seen that R = 300 A was suf-
ficient for both crack systems, with further increase in configu-
ration size resulting in negligible change to Kj.. Simulations of
Harmonic-B were done only with R = 300 A.

Table B.4: Kigc (MPa +/m) values of crack systems with varying configuration
radii (R) using Harmonic-A. The convergence threshold (fnorm-thr) was le-6
eV/A and load increment (AK7) was 0.028 MPa y/m.

Crack R=150A R=300A R=600A
system
(100)[001] 3.12 3.15 .
(100)[011] 4.48 4.54 4.57

Influence of convergence threshold (fnorm-thr) was tested
with Harmonic-A using the incremental loading procedure (see
table[B.5)). It can be seen that a convergence threshold of fnorm-
thr = le-6 eV/A was sufficient, and using a tighter threshold
produced no change in K;gc Simulations with Harmonic-B

were performed only with fnorm-thr = le-6 eV/A.

Table B.5: KITC (MPa ym) values of crack systems for varying convergence
thresholds (fnorm-thr) with Harmonic-A. The configuration radius (R) was
300 A and load increment (AK7) was 0.028 MPa v/m.

Crack system fnorm-thr = fnorm-thr =
le-6 eV/A le-8 eV/A
(100)[001] 3.15 3.15
(100)[011] 4.54 4.54

Influence of loading increment (AKy) on K}‘c‘c (MPa vm) was
tested with Harmonic-A using the incremental loading pro-
cedure (see table [B.6). It can be seen that having smaller
increments than 0.028 MPa+/m has little influence, whereas
it increases computational cost (more steps needed). Hence,
AK; = 0.028 MPa v/m was used (also for Harmonic-B).
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