14 research outputs found

    Linking osteopetrosis and pycnodysostosis: Regulation of cathepsin K expression by the microphthalmia transcription factor family

    No full text
    Various genetic conditions produce dysfunctional osteoclasts resulting in osteopetrosis or osteosclerosis. These include human pycnodysostosis, an autosomal recessive syndrome caused by cathepsin K mutation, cathepsin K-deficient mice, and mitf mutant rodent strains. Cathepsin K is a highly expressed cysteine protease in osteoclasts that plays an essential role in the degradation of protein components of bone matrix. Cathepsin K also is expressed in a significant fraction of human breast cancers where it could contribute to tumor invasiveness. Mitf is a member of a helix–loop–helix transcription factor subfamily, which contains the potential dimerization partners TFE3, TFEB, and TFEC. In mice, dominant negative, but not recessive, mutations of mitf, produce osteopetrosis, suggesting a functional requirement for other family members. Mitf also has been found—and TFE3 has been suggested—to modulate age-dependent changes in osteoclast function. This study identifies cathepsin K as a transcriptional target of Mitf and TFE3 via three consensus elements in the cathepsin K promoter. Additionally, cathepsin K mRNA and protein were found to be deficient in mitf mutant osteoclasts, and overexpression of wild-type Mitf dramatically up-regulated expression of endogenous cathepsin K in cultured human osteoclasts. Cathepsin K promoter activity was disrupted by dominant negative, but not recessive, mouse alleles of mitf in a pattern that closely matches their osteopetrotic phenotypes. This relationship between cathepsin K and the Mitf family helps explain the phenotypic overlap of their corresponding deficiencies in pycnodysostosis and osteopetrosis and identifies likely regulators of cathepsin K expression in bone homeostasis and human malignancy

    Hypoxia-induced transcriptional repression of the melanoma-associated oncogene MITF

    No full text
    Microphthalmia-associated transcription factor (MITF) regulates normal melanocyte development and is also a lineage-selective oncogene implicated in melanoma and clear-cell sarcoma (i.e., melanoma of soft parts). We have observed that MITF expression is potently reduced under hypoxic conditions in primary melanocytes and melanoma and clear cell sarcoma cells through hypoxia inducible factor 1 (HIF1)-mediated induction of the transcriptional repressor differentially expressed in chondrocytes protein 1 (DEC1) (BHLHE40), which subsequently binds and suppresses the promoter of M-MITF (melanocyte-restricted MITF isoform). Correspondingly, hypoxic conditions or HIF1α stabilization achieved by using small-molecule prolyl-hydroxylase inhibitors reduced M-MITF expression, leading to melanoma cell growth arrest that was rescued by ectopic expression of M-MITF in vitro. Prolyl hydroxylase inhibition also potently suppressed melanoma growth in a mouse xenograft model. These studies illuminate a physiologic hypoxia response in pigment cells leading to M-MITF suppression, one that suggests a potential survival advantage mechanism for MITF amplification in metastatic melanoma and offers a small-molecule strategy for suppression of the MITF oncogene in vivo

    Mitf and Tfe3, two members of the Mitf-Tfe family of bHLH-Zip transcription factors, have important but functionally redundant roles in osteoclast development

    No full text
    The Mitf-Tfe family of basic helix–loop–helix-leucine zipper (bHLH-Zip) transcription factors encodes four family members: Mitf, Tfe3, Tfeb, and Tfec. In vitro, each protein in the family can bind DNA as a homo- or heterodimer with other family members. Mutational studies in mice have shown that Mitf is essential for melanocyte and eye development, whereas Tfeb is required for placental vascularization. Here, we uncover a role for Tfe3 in osteoclast development, a role that is functionally redundant with Mitf. Although osteoclasts seem normal in Mitf or Tfe3 null mice, the combined loss of the two genes results in severe osteopetrosis. We also show that Tfec mutant mice are phenotypically normal, and that the Tfec mutation does not alter the phenotype of Mitf, Tfeb, or Tfe3 mutant mice. Surprisingly, our studies failed to identify any phenotypic overlap between the different Mitf–Tfe mutations. These results suggest that heterodimeric interactions are not essential for Mitf-Tfe function in contrast to other bHLH-Zip families like Myc/Max/Mad, where heterodimeric interactions seem to be essential

    Cloning of an Alpha-TFEB fusion in renal tumors harboring the t(6;11)(p21;q13) chromosome translocation

    No full text
    MITF, TFE3, TFEB, and TFEC comprise a transcription factor family (MiT) that regulates key developmental pathways in several cell lineages. Like MYC, MiT members are basic helix-loop-helix-leucine zipper transcription factors. MiT members share virtually perfect homology in their DNA binding domains and bind a common DNA motif. Translocations of TFE3 occur in specific subsets of human renal cell carcinomas and in alveolar soft part sarcomas. Although multiple translocation partners are fused to TFE3, each translocation product retains TFE3's basic helix–loop–helix leucine zipper. We have identified the genes fused by the chromosomal translocation t(6;11)(p21.1;q13), characteristic of another subset of renal neoplasms. In two primary tumors we found that Alpha, an intronless gene, rearranges with the first intron of TFEB, just upstream of TFEB's initiation ATG, preserving the entire TFEB coding sequence. Fluorescence in situ hybridization confirmed the involvement of both TFEB and Alpha in this translocation. Although the Alpha promoter drives expression of this fusion gene, the Alpha gene does not contribute to the ORF. Whereas TFE3 is typically fused to partner proteins in subsets of renal tumors, we found that wild-type, unfused TFE3 stimulates clonogenic growth in a cell-based assay, suggesting that dysregulated expression, rather than altered function of TFEB or TFE3 fusions, may confer neoplastic properties, a mechanism reminiscent of MYC activation by promoter substitution in Burkitt's lymphoma. Alpha-TFEB is thus identified as a fusion gene in a subset of pediatric renal neoplasms
    corecore