381 research outputs found

    From GHz to mHz: A Multiwavelength Study of the Acoustically Active 14 August 2004 M7.4 Solar Flare

    Full text link
    We carried out an electromagnetic acoustic analysis of the solar flare of 14 August 2004 in active region AR10656 from the radio to the hard X-ray spectrum. The flare was a GOES soft X-ray class M7.4 and produced a detectable sun quake, confirming earlier inferences that relatively low-energy flares may be able to generate sun quakes. We introduce the hypothesis that the seismicity of the active region is closely related to the heights of coronal magnetic loops that conduct high-energy particles from the flare. In the case of relatively short magnetic loops, chromospheric evaporation populates the loop interior with ionized gas relatively rapidly, expediting the scattering of remaining trapped high-energy electrons into the magnetic loss cone and their rapid precipitation into the chromosphere. This increases both the intensity and suddenness of the chromospheric heating, satisfying the basic conditions for an acoustic emission that penetrates into the solar interior.Comment: Accepted in Solar Physic

    Solar Intranetwork Magnetic Elements: bipolar flux appearance

    Full text link
    The current study aims to quantify characteristic features of bipolar flux appearance of solar intranetwork (IN) magnetic elements. To attack such a problem, we use the Narrow-band Filter Imager (NFI) magnetograms from the Solar Optical Telescope (SOT) on board \emph{Hinode}; these data are from quiet and an enhanced network areas. Cluster emergence of mixed polarities and IN ephemeral regions (ERs) are the most conspicuous forms of bipolar flux appearance within the network. Each of the clusters is characterized by a few well-developed ERs that are partially or fully co-aligned in magnetic axis orientation. On average, the sampled IN ERs have total maximum unsigned flux of several 10^{17} Mx, separation of 3-4 arcsec, and a lifetime of 10-15 minutes. The smallest IN ERs have a maximum unsigned flux of several 10^{16} Mx, separations less than 1 arcsec, and lifetimes as short as 5 minutes. Most IN ERs exhibit a rotation of their magnetic axis of more than 10 degrees during flux emergence. Peculiar flux appearance, e.g., bipole shrinkage followed by growth or the reverse, is not unusual. A few examples show repeated shrinkage-growth or growth-shrinkage, like magnetic floats in the dynamic photosphere. The observed bipolar behavior seems to carry rich information on magneto-convection in the sub-photospheric layer.Comment: 26 pages, 14 figure

    A dimensionally continued Poisson summation formula

    Full text link
    We generalize the standard Poisson summation formula for lattices so that it operates on the level of theta series, allowing us to introduce noninteger dimension parameters (using the dimensionally continued Fourier transform). When combined with one of the proofs of the Jacobi imaginary transformation of theta functions that does not use the Poisson summation formula, our proof of this generalized Poisson summation formula also provides a new proof of the standard Poisson summation formula for dimensions greater than 2 (with appropriate hypotheses on the function being summed). In general, our methods work to establish the (Voronoi) summation formulae associated with functions satisfying (modular) transformations of the Jacobi imaginary type by means of a density argument (as opposed to the usual Mellin transform approach). In particular, we construct a family of generalized theta series from Jacobi theta functions from which these summation formulae can be obtained. This family contains several families of modular forms, but is significantly more general than any of them. Our result also relaxes several of the hypotheses in the standard statements of these summation formulae. The density result we prove for Gaussians in the Schwartz space may be of independent interest.Comment: 12 pages, version accepted by JFAA, with various additions and improvement

    Which Kubo formula gives the exact conductance of a mesoscopic disordered system?

    Full text link
    In both research and textbook literature one often finds two ``different'' Kubo formulas for the zero-temperature conductance of a non-interacting Fermi system. They contain a trace of the product of velocity operators and single-particle (retarded and advanced) Green operators: Tr(v^xG^rv^xG^a)\text{Tr} (\hat{v}_x \hat{G}^r \hat{v}_x \hat{G}^a) or Tr(v^xImG^v^xImG^)\text{Tr} (\hat{v}_x \text{Im} \hat{G} \hat{v}_x \text{Im} \hat{G}). The study investigates the relationship between these expressions, as well as the requirements of current conservation, through exact evaluation of such quantum-mechanical traces for a nanoscale (containing 1000 atoms) mesoscopic disordered conductor. The traces are computed in the semiclassical regime (where disorder is weak) and, more importantly, in the nonperturbative transport regime (including the region around localization-delocalization transition) where concept of mean free path ceases to exist. Since quantum interference effects for such strong disorder are not amenable to diagrammatic or nonlinear σ\sigma-model techniques, the evolution of different Green function terms with disorder strength provides novel insight into the development of an Anderson localized phase.Comment: 7 pages, 5 embedded EPS figures, final published version (note: PRB article has different title due to editorial censorship

    Electrically tunable solid-state silicon nanopore ion filter

    Get PDF
    We show that a nanopore in a silicon membrane connected to a voltage source can be used as an electrically tunable ion filter. By applying a voltage between the heavily doped semiconductor and the electrolyte, it is possible to invert the ion population inside the nanopore and vary the conductance for both cations and anions in order to achieve selective conduction of ions even in the presence of significant surface charges in the membrane. Our model based on the solution of the Poisson equation and linear transport theory indicates that in narrow nanopores substantial gain can be achieved by controlling electrically the width of the charge double layer

    Influence of green tea consumption on endoxifen steady-state concentration in breast cancer patients treated with tamoxifen

    Get PDF
    Background: Many cancer patients use additional herbs or supplements in combination with their anti-cancer therapy. Green tea—active ingredient epigallocatechin-3-gallate (EGCG)—is one of the most commonly used dietary supplements among breast cancer patients. EGCG may alter the metabolism of tamoxifen. Therefore, the aim of this study was to investigate the influence of green tea supplements on the pharmacokinetics of endoxifen; the most relevant active metabolite of tamoxifen. Methods: In this single-center, randomized cross-over trial, effects of green tea capsules on endoxifen levels were evaluated. Patients treated with tamoxifen for at least 3 months were eligible for this study. After inclusion, patients were consecutively treated with tamoxifen monotherapy for 28 days and in combination with green tea supplements (1 g twice daily; containing 300 mg EGCG) for 14 days (or vice versa). Blood samples were collected on the last day of monotherapy or combination therapy. Area under the curve (AUC0–24h), maximum concentration (Cmax) and minimum concentration (Ctrough) were obtained from individual plasma concentration–time curves. Results: No difference was found in geometric mean endoxifen AUC0–24h in the period with green tea versus tamoxifen monotherapy (− 0.4%; 95% CI − 8.6 to 8.5%; p = 0.92). Furthermore, no differences in Cmax (− 2.8%; − 10.6 to 5.6%; p = 0.47) nor Ctrough (1.2%; − 7.3 to 10.5%; p = 0.77) were found. Moreover, no severe toxicity was reported during the whole study period. Conclusions: This study demonstrated the absence of a pharmacokinetic interaction between green tea supplements and tamoxifen. Therefore, the use of green tea by patients with tamoxifen does not have to be discouraged

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of 2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem

    Global and regional trends of atmospheric sulfur

    Get PDF
    The profound changes in global SO2 emissions over the last decades have affected atmospheric composition on a regional and global scale with large impact on air quality, atmospheric deposition and the radiative forcing of sulfate aerosols. Reproduction of historical atmospheric pollution levels based on global aerosol models and emission changes is crucial to prove that such models are able to predict future scenarios. Here, we analyze consistency of trends in observations of sulfur components in air and precipitation from major regional networks and estimates from six different global aerosol models from 1990 until 2015. There are large interregional differences in the sulfur trends consistently captured by the models and observations, especially for North America and Europe. Europe had the largest reductions in sulfur emissions in the first part of the period while the highest reduction came later in North America and East Asia. The uncertainties in both the emissions and the representativity of the observations are larger in Asia. However, emissions from East Asia clearly increased from 2000 to 2005 followed by a decrease, while in India a steady increase over the whole period has been observed and modelled. The agreement between a bottom-up approach, which uses emissions and process-based chemical transport models, with independent observations gives an improved confidence in the understanding of the atmospheric sulfur budget

    Advances in Global and Local Helioseismology: an Introductory Review

    Full text link
    Helioseismology studies the structure and dynamics of the Sun's interior by observing oscillations on the surface. These studies provide information about the physical processes that control the evolution and magnetic activity of the Sun. In recent years, helioseismology has made substantial progress towards the understanding of the physics of solar oscillations and the physical processes inside the Sun, thanks to observational, theoretical and modeling efforts. In addition to the global seismology of the Sun based on measurements of global oscillation modes, a new field of local helioseismology, which studies oscillation travel times and local frequency shifts, has been developed. It is capable of providing 3D images of the subsurface structures and flows. The basic principles, recent advances and perspectives of global and local helioseismology are reviewed in this article.Comment: 86 pages, 46 figures; "Pulsation of the Sun and Stars", Lecture Notes in Physics, Vol. 832, Rozelot, Jean-Pierre; Neiner, Coralie (Eds.), 201
    corecore