We generalize the standard Poisson summation formula for lattices so that it
operates on the level of theta series, allowing us to introduce noninteger
dimension parameters (using the dimensionally continued Fourier transform).
When combined with one of the proofs of the Jacobi imaginary transformation of
theta functions that does not use the Poisson summation formula, our proof of
this generalized Poisson summation formula also provides a new proof of the
standard Poisson summation formula for dimensions greater than 2 (with
appropriate hypotheses on the function being summed). In general, our methods
work to establish the (Voronoi) summation formulae associated with functions
satisfying (modular) transformations of the Jacobi imaginary type by means of a
density argument (as opposed to the usual Mellin transform approach). In
particular, we construct a family of generalized theta series from Jacobi theta
functions from which these summation formulae can be obtained. This family
contains several families of modular forms, but is significantly more general
than any of them. Our result also relaxes several of the hypotheses in the
standard statements of these summation formulae. The density result we prove
for Gaussians in the Schwartz space may be of independent interest.Comment: 12 pages, version accepted by JFAA, with various additions and
improvement