We carried out an electromagnetic acoustic analysis of the solar flare of 14
August 2004 in active region AR10656 from the radio to the hard X-ray spectrum.
The flare was a GOES soft X-ray class M7.4 and produced a detectable sun quake,
confirming earlier inferences that relatively low-energy flares may be able to
generate sun quakes. We introduce the hypothesis that the seismicity of the
active region is closely related to the heights of coronal magnetic loops that
conduct high-energy particles from the flare. In the case of relatively short
magnetic loops, chromospheric evaporation populates the loop interior with
ionized gas relatively rapidly, expediting the scattering of remaining trapped
high-energy electrons into the magnetic loss cone and their rapid precipitation
into the chromosphere. This increases both the intensity and suddenness of the
chromospheric heating, satisfying the basic conditions for an acoustic emission
that penetrates into the solar interior.Comment: Accepted in Solar Physic