330 research outputs found
Erratum: This Article Corrects: "Burnout, Drop Out, Suicide: Physician Loss in Emergency Medicine, Part 1"
This corrects the article "Burnout, Drop Out, Suicide: Physician Loss in Emergency Medicine, Part I" on page 485
Respiratory activity classification based on ballistocardiogram analysis
Ballistocardiogram signals describe the mechanical activity of the heart. It can be measured by an intelligent mattress in a totally unobtrusive way during periods of rest in bed or sitting on a chair. The BCG signals are highly vulnerable to artefacts such as noise and movement making useful information like respiratory activities difficult to extract. The purpose of this study is to investigate a classification method to distinguish between seven types of respiratory activities such as normal breathing, cough and hold breath. We propose a feature selection method based on a spectral analysis namely spectral flatness measure (SFM) and spectral centroid (SC). The classification is carried out using the nearest neighbor classifier. The proposed method is able to discriminate between the seven classes with the accuracy of 94% which shows its usefulness in context of Telemedicine
Monitoring conterminous United States (CONUS) land cover change with Web-Enabled Landsat Data (WELD)
Forest cover loss and bare ground gain from 2006 to 2010 for the conterminous United States (CONUS) were quantified at a 30 m spatial resolution using Web-Enabled Landsat Data available from the USGS Center for Earth Resources Observation and Science (EROS) (http://landsat.usgs.gov/WELD.php). The approach related multi-temporal WELD metrics and expert-derived training data for forest cover loss and bare ground gain through a decision tree classification algorithm. Forest cover loss was reported at state and ecoregional scales, and the identification of core forests\u27 absent of change was made and verified using LiDAR data from the GLAS (Geoscience Laser Altimetry System) instrument. Bare ground gain correlated with population change for large metropolitan statistical areas (MSAs) outside of desert or semi-desert environments. Google Earth™ time series images were used to validate the products. Mapped forest cover loss totaled 53,084 km2 and was found to be depicted conservatively, with a user\u27s accuracy of 78% and a producer\u27s accuracy of 68%. Excluding errors of adjacency, user\u27s and producer\u27s accuracies rose to 93% and 89%, respectively. Mapped bare ground gain equaled 5974 km2 and nearly matched the estimated area from the reference (Google Earth™) classification; however, user\u27s (42%) and producer\u27s (49%) accuracies were much less than those of the forest cover loss product. Excluding errors of adjacency, user\u27s and producer\u27s accuracies rose to 62% and 75%, respectively. Compared to recent 2001–2006 USGS National Land Cover Database validation data for forest loss (82% and 30% for respective user\u27s and producer\u27s accuracies) and urban gain (72% and 18% for respective user\u27s and producer\u27s accuracies), results using a single CONUS-scale model with WELD data are promising and point to the potential for national scale operational mapping of key land cover transitions. However, validation results highlighted limitations, some of which can be addressed by improving training data, creating a more robust image feature space, adding contemporaneous Landsat 5 data to the inputs, and modifying definition sets to account for differences in temporal and spatial observational scales. The presented land cover extent and change data are available via the official WELD website (ftp://weldftp.cr.usgs.gov/CONUS_5Y_LandCover/ftp://weldftp.cr.usgs. gov/CONUS_5Y_LandCover/)
Evaluating The National Land Cover Database Tree Canopy and Impervious Cover Estimates Across the Conterminous United States: A Comparison with Photo-Interpreted Estimates
The 2001 National Land Cover Database (NLCD) provides 30-m resolution estimates of percentage tree canopy and percentage impervious cover for the conterminous United States. Previous estimates that compared NLCD tree canopy and impervious cover estimates with photo-interpreted cover estimates within selected counties and places revealed that NLCD underestimates tree and impervious cover. Based on these previous results, a wall-to-wall comprehensive national analysis was conducted to determine if and how NLCD derived estimates of tree and impervious cover varies from photo-interpreted values across the conterminous United States. Results of this analysis reveal that NLCD significantly underestimates tree cover in 64 of the 65 zones used to create the NCLD cover maps, with a national average underestimation of 9.7% (standard error (SE) = 1.0%) and a maximum underestimation of 28.4% in mapping zone 3. Impervious cover was also underestimated in 44 zones with an average underestimation of 1.4% (SE = 0.4%) and a maximum underestimation of 5.7% in mapping zone 56. Understanding the degree of underestimation by mapping zone can lead to better estimates of tree and impervious cover and a better understanding of the potential limitations associated with NLCD cover estimates
Is age a prognostic biomarker for survival among women with locally advanced cervical cancer treated with chemoradiation? An NRG Oncology/Gynecologic Oncology Group ancillary data analysis
Objective
To determine the effect of age on completion of and toxicities following treatment of local regionally advanced cervical cancer (LACC) on Gynecologic Oncology Group (GOG) Phase I–III trials.
Methods
An ancillary data analysis of GOG protocols 113, 120, 165, 219 data was performed. Wilcoxon, Pearson, and Kruskal-Wallis tests were used for univariate and multivariate analysis. Log rank tests were used to compare survival lengths.
Results
One-thousand-three-hundred-nineteen women were included; 60.7% were Caucasian, 15% were age 60–70 years and an additional 5% were >70; 87% had squamous histology, 55% had stage IIB disease and 34% had IIIB disease. Performance status declined with age (p = 0.006). Histology and tumor stage did not significantly differ., Number of cycles of chemotherapy received, radiation treatment time, nor dose modifications varied with age. Notably, radiation protocol deviations and failure to complete brachytherapy (BT) did increase with age (p = 0.022 and p 50 for all-cause mortality (HR 1.02; 95% CI, 1.01–1.04) was found, but no association between age and disease specific mortality was found.
Conclusion
This represents a large analysis of patients treated for LACC with chemo/radiation, approximately 20% of whom were >60 years of age. Older patients, had higher rates of incomplete brachytherapy which is not explained by collected toxicity data. Age did not adversely impact completion of chemotherapy and radiation or toxicities
Can we detect more ephemeral floods with higher density harmonized Landsat Sentinel 2 data compared to Landsat 8 alone?
Spatiotemporal quantification of surface water and flooding is essential given that floods are among the largest natural hazards. Effective disaster response management requires near real-time information on flood extent. Satellite remote sensing is the only way of monitoring these dynamics across vast areas and over time. Previous water and flood mapping efforts have relied on optical time series, despite cloud contamination. This reliance on optical data is due to the availability of systematically acquired and easily accessible optical data globally for over 40 years. Prior research used either MODIS or Landsat data, trading either high temporal density but lower spatial resolution or lower cadence but higher spatial resolution. Both MODIS and Landsat pose limitations as Landsat can miss ephemeral floods, whereas MODIS misses small floods and inaccurately delineates flood edges. Leveraging high temporal frequency of 3–4 days of the existing Landsat-8 (L8) and two Sentinel-2 (S2) satellites combined, in this research, we assessed whether the increased temporal frequency of the three sensors improves our ability to detect surface water and flooding extent compared to a single sensor (L8 alone). Our study area was Australia's Murray-Darling Basin, one of the world's largest dryland basins that experiences ephemeral floods. We applied machine learning to NASA's Harmonized Landsat Sentinel-2 (HLS) Surface Reflectance Product, which combines L8 and S2 observations, to map surface water and flooding dynamics. Our overall accuracy, estimated from a stratified random sample, was 99%. Our user's and producer's accuracy for the water class was 80% (±3.6%, standard error) and 76% (±5.8%). We focused on 2019, one of the most recent years when all three HLS sensors operated at full capacity. Our results show that water area (permanent and flooding) identified with the HLS was greater than that identified by L8, and some short-lived flooding events were detected only by the HLS. Comparison with high resolution (3 m) PlanetScope data identified extensive mixed pixels at the 30 m HLS resolution, highlighting the need for improved spatial resolution in future work. The HLS has been able to detect floods in cases when one sensor (L8) alone was not, despite 2019 being one of the driest years in the area, with few flooding events. The dense optical time-series offered by the HLS data is thus critical for capturing temporally dynamic phenomena (i.e., ephemeral floods in drylands), highlighting the importance of harmonized data such as the HLS
AI-powered transmitted light microscopy for functional analysis of live cells
Transmitted light microscopy can readily visualize the morphology of living cells. Here, we introduce artificial-intelligence-powered transmitted light microscopy (AIM) for subcellular structure identification and labeling-free functional analysis of live cells. AIM provides accurate images of subcellular organelles; allows identification of cellular and functional characteristics (cell type, viability, and maturation stage); and facilitates live cell tracking and multimodality analysis of immune cells in their native form without labeling
A ROC analysis-based classification method for landslide susceptibility maps
[EN] A landslide susceptibility map is a crucial tool for landuse spatial planning and management in mountainous areas. An essential issue in such maps is the determination of susceptibility thresholds. To this end, the map is zoned into a limited number of classes. Adopting one classification system or another will not only affect the map's readability and final appearance, but most importantly, it may affect the decision-making tasks required for effective land management. The present study compares and evaluates the reliability of some of the most commonly used classification methods, applied to a susceptibility map produced for the area of La Marina (Alicante, Spain). A new classification method based on ROC analysis is proposed, which extracts all the useful information from the initial dataset (terrain characteristics and landslide inventory) and includes, for the first time, the concept of misclassification costs. This process yields a more objective differentiation of susceptibility levels that relies less on the intrinsic structure of the terrain characteristics. The results reveal a considerable difference between the classification methods used to define the most susceptible zones (in over 20% of the surface) and highlight the need to establish a standard method for producing classified susceptibility maps. The method proposed in the study is particularly notable for its consistency, stability and homogeneity, and may mark the starting point for consensus on a generalisable classification method.Cantarino-Martí, I.; Carrión Carmona, MÁ.; Goerlich-Gisbert, F.; Martínez Ibáñez, V. (2018). A ROC analysis-based classification method for landslide susceptibility maps. Landslides. 1-18. doi:10.1007/s10346-018-1063-4S118Armstrong MP, Xiao N, Bennett DA (2003) Using genetic algorithms to create multicriteria class intervals for choropleth maps. Ann Assoc Am Geogr 93(3):595–623. https://doi.org/10.1111/1467-8306.9303005Atkinson P, Massari R (1998) Generalised linear modelling of susceptibility to landsliding in the central Apennines, Italy. Comput Geosci 24(4):373–385. https://doi.org/10.1016/S0098-3004(97)00117-9Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65(1–2):15–31. https://doi.org/10.1016/j.geomorph.2004.06.010Baeza C, Lantada N, Amorim S (2016) Statistical and spatial analysis of landslide susceptibility maps with different classification systems. Environ Earth Science 75:1318. https://doi.org/10.1007/s12665-016-6124-1Basofi A, Fariza A, Ahsan AS, Kamal IM (2015) A comparison between natural and head/tail breaks in LSI (landslide susceptibility index) classification for landslide susceptibility mapping: a case study in Ponorogo, East Java, Indonesia. 2015 International Conference on Science in Information Technology, pp 337–342Cantarino I (2013) Elaboración y validación de un modelo jerárquico derivado de SIOSE. Revista de Teledetección 39:5–21Carrara A, Crosta GB, Frattini P (2008) Comparing models of debris-flow susceptibility in the alpine environment. Geomorphology 94(3–4):353–378. https://doi.org/10.1016/j.geomorph.2006.10.033Chacón J, Irigaray C, Fernández T, El Hamdouni R (2006) Engineering geology maps: landslides and geographical information systems. Bull Eng Geol Environ 65(4):341–411Chung CJF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30:451–472COPUT (1998) Lithology, exploitation of industrial rocks and landslide risk in the Valencian Community. Thematic Mapping Series. Department of Public Works of the Valencian Regional GovernmentDrummond C, Holte RC (2006) Cost curves: an improved method for visualizing classifier performance. Mach Learn 65(1):95–130Duman TY, Can T, Gokceoglu C, Nefeslioglu HA, Sonmez H (2006) Application of logistic regression for landslide susceptibility zoning of Cekmece Area, Istanbul, Turkey. Environ Geol 51(2):241–256. https://doi.org/10.1007/s00254-006-0322-1Evans IS (1977) The selection of class intervals. Transactions of the Institute of British Geographers. Contemp Cartograph 2(1):98–124. https://doi.org/10.2307/622195Fleiss JL, Levin B, Paik MC (2003) Statistical methods for rates and proportions, Book Series: Wiley Series in Probability and Statistics. John Wiley & Sons. Print ISBN: 9780471526292. doi: https://doi.org/10.1002/0471445428Foody GM (2004) Thematic map comparison: evaluating the statistical significance of differences in classification accuracy. Photogramm Eng Remote Sens 70(5):627–633Fotheringham AS, Brunsdon C, Charlton M (2000) Quantitative geography: perspectives on spatial data analysis. SAGE Publications, Thousand Oaks 270 ppFrattini P, Crosta G, Carrara A (2010) Techniques for evaluating the performance of landslide susceptibility models. Eng Geol 111(1–4):62–72. https://doi.org/10.1016/j.enggeo.2009.12.004Geisser S (1998) Comparing two tests used for diagnostic or screening processes. Stat Probability Lett 40:113–119Greiner M, Pfeiffer D, Smith RD (2000) Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Prev Vet Med 45:23–41Günther A, Reichenbach P, Malet JP, van den Eeckhaut M, Hervás J, Dashwood C, Guzzetti F (2013) Tier-based approaches for landslide susceptibility assessment in Europe. Landslides 10:529–546. https://doi.org/10.1007/s10346-012-0349-1Günther A, Van Den Eeckhaut M, Malet J-P, Reichenbach P, Hervás J (2014) Climate-physiographically differentiated Pan-European landslide susceptibility assessment using spatial multi-criteria evaluation and transnational landslide information. Geomorphology 224:69–85Gupta RP, Kanungo DP, Arora MK, Sarkar S (2008) Approaches for comparative evaluation of raster GIS-based landslide susceptibility zonation maps. Int J Appl Earth Obs Geoinf 10(3):330–341. https://doi.org/10.1016/j.jag.2008.01.003Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81(1–2):166–184. https://doi.org/10.1016/j.geomorph.2006.04.007Hervás J (2017) El inventario de movimientos de ladera de España ALISSA: Metodología y análisis preliminar. In: Alonso E, Corominas J, Hürlimann M (Eds.), Taludes 2017. Proc. IX Simposio Nacional sobre Taludes y Laderas Inestables, Santander, 27–30 June 2017. CIMNE, Barcelona, pp. 629–639Jaedicke C, Van Den Eeckhaut M, Nadim F et al (2014) Identification of landslide hazard and risk ‘hotspots’ in Europe. Bull Eng Geol Environ 73:325. https://doi.org/10.1007/s10064-013-0541-0Jenks GF (1967) The data model concept in statistical mapping. Int Yearbook Cartograph 7:186–190Jiang B (2013) Head/tail breaks: a new classification scheme for data with a heavy-tailed distribution. Prof Geogr 65(3):482–494. https://doi.org/10.1080/00330124.2012.700499Kiang MY (2003) A comparative assessment of classification methods. Decis Support Syst 35(4):441–454. https://doi.org/10.1016/S0167-9236(02)00110-0Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174Langping L, Hengxing L, Changbao G, Yongshuang Z, Quanwen L, Yuming W (2017) A modified frequency ratio method for landslide susceptibility assessment. Landslides 14:727–741. https://doi.org/10.1007/s10346-016-0771-xLee S (2007) Comparison of landslide susceptibility maps generated through multiple logistic regression for three test areas in Korea. Earth Surf Process Landforms 32:2133–2148. https://doi.org/10.1002/esp.1517Liu C, Frazier P, Kumar L (2007) Comparative assessment of the measures of thematic classification accuracy. Remote Sens Environ 107(4):606–616. https://doi.org/10.1016/j.rse.2006.10.010López-Ratón M, Rodríguez-Álvarez MX, Cadarso-Suárez C, Gude-Sampedro F (2014) Optimal cutpoints: an R package for selecting optimal cutpoints in diagnostic tests. J Stat Softw 61(8):4Malet JP, Puissant A, Mathieu A, Van Den Eeckhaut M, Fressard M (2013) Integrating spatial multi-criteria evaluation and expert knowledge for country-scale landslide susceptibility analysis: application to France. In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice. Springer, Berlin. https://doi.org/10.1007/978-3-642-31325-7_40McGee S (2002) Simplifying likelihood ratios. J Gen Intern Med 17:647–650Metz C (1978) Basic principles of ROC analysis. Semin Nucl Med VIII(4):183–198Nadim F, Kjekstad O, Peduzzi P, Herold C, Jaedicke C (2006) Global landslide and avalanche hotspots. Landslides 3:159–173. https://doi.org/10.1007/s10346-006-0036-1Ohlmacher G, Davis J (2003) Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng Geol 69(3–4):331–343. https://doi.org/10.1016/S0013-7952(03)00069-3Powell RL, Matzke N, de Souza C Jr, Clark M, Numata I, Hess LL, Roberts DA (2004) Sources of error accuracy assessment of thematic land-cover maps in the Brazilian Amazon. Remote Sens Environ 90(2):221–234. https://doi.org/10.1016/j.rse.2003.12.007Saaty T (1980) The analytic hierarchy process. McGraw Hill, New YorkSmits PC, Dellepiane SG, Schowengerdt RA (1999) Quality assessment of image classification algorithms for land-cover mapping: a review and proposal for a cost-based approach. Int J Remote Sens 20:1461–1486Stehman SV, Czaplewski RL (1998) Design and analysis of thematic map accuracy assessment: fundamental principles. Remote Sens Environ 64:331–344Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240(4857):1285–1293Van Den Eeckhaut M, Hervás J, Jaedicke C, Malet J-P, Montanarella L, Nadim F (2012) Statistical modelling of Europe-wide landslide susceptibility using limited landslide inventory data. Landslides 8:357–369Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. Natural hazards. UNESCO, ParisZhu X (2016) GIS for environmental applications. Routledge, Abingdon, p 490Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39(4):561–57
The N-terminal coiled-coil of Ndel1 is a regulated scaffold that recruits LIS1 to dynein
Binding of the N terminus of Ndel1 to dynein facilitates microtubule self-organization in Ran-induced asters
- …