9 research outputs found

    Establishing winter annual cover crops by interseeding into Maize and Soybean

    Get PDF
    The limited time available for cover crop establishment after maize (Zea mays L.) and soybean [Glycine max (L.) Merr.] harvest is one of the main reasons for low cover crop adoption in the upper Midwest. Therefore, a 2‐yr multilocation study was conducted to evaluate winter annual cover crops establishment, their effect on main crop grain yields, and soil water content when interseeded into standing maize and soybean. Treatments were three interseeding dates (broadcasting at R4, R5, and R6 growth stages for maize, and R6, R7, and R8 for soybean) and three cover crops (winter camelina [WC] [Camelina sativa L.], field pennycress [PC] [Thlaspi arvense L.], winter rye [Secale cereale L.] plus a no cover crop control). Cover crop establishment and growth varied with interseeding date across locations and seasons for both maize and soybean systems. Averaged over the years, rye produced more green cover and biomass than the oilseeds in spring. However, at the northern‐most site, the greatest (40%) green cover was recorded from pennycress and indicates its potential as a cover crop. Seeding date and cover crops did not negatively affect maize or soybean grain yields or soil water content. Generally, cover crop establishment and growth were better in the soybean system than maize due to better light penetration. Further research is needed to develop better suited cultivars and/or agronomic management practices for interseeding into maize. The results of this study indicate that producers could integrate these covers to diversify and add ecosystem services to soybean production practices

    Relay-Sowing Soybean Into Established Winter Annual Cover Crops

    No full text
    Cover crop acreage continues to increase as soil, grazing, and ecosystem benefits become better known. The profit aspect of sustainability could be improved by producing intersown cover crops with an added commodity value. Objectives of this research were to determine if field pennycress, winter camelina, and winter rye could act as effective, feasible, intersown cover crops in soybean-soybean-corn, and, corn-soybean-corn crop sequences. Three sowing dates of each crop were established the previous fall, and soybean, relay-sown the following spring at Prosper and Casselton, ND. Experimental design was a 10 treatment, four replicate, randomized complete block with a 3×3 factorial arrangement, and one non-treated check (NTC) within each replicate. In both crop sequences, treatments containing field pennycress and winter camelina had either similar, or reduced soybean seed yield in relation to the (NTC). Additional yield obtained from field pennycress and/or winter camelina seed did not render this cropping system economically feasible

    Establishing winter annual cover crops by interseeding into Maize and Soybean

    Get PDF
    The limited time available for cover crop establishment after maize (Zea mays L.) and soybean [Glycine max (L.) Merr.] harvest is one of the main reasons for low cover crop adoption in the upper Midwest. Therefore, a 2‐yr multilocation study was conducted to evaluate winter annual cover crops establishment, their effect on main crop grain yields, and soil water content when interseeded into standing maize and soybean. Treatments were three interseeding dates (broadcasting at R4, R5, and R6 growth stages for maize, and R6, R7, and R8 for soybean) and three cover crops (winter camelina [WC] [Camelina sativa L.], field pennycress [PC] [Thlaspi arvense L.], winter rye [Secale cereale L.] plus a no cover crop control). Cover crop establishment and growth varied with interseeding date across locations and seasons for both maize and soybean systems. Averaged over the years, rye produced more green cover and biomass than the oilseeds in spring. However, at the northern‐most site, the greatest (40%) green cover was recorded from pennycress and indicates its potential as a cover crop. Seeding date and cover crops did not negatively affect maize or soybean grain yields or soil water content. Generally, cover crop establishment and growth were better in the soybean system than maize due to better light penetration. Further research is needed to develop better suited cultivars and/or agronomic management practices for interseeding into maize. The results of this study indicate that producers could integrate these covers to diversify and add ecosystem services to soybean production practices.This article is published as Mohammed, Yesuf Assen, Heather L. Matthees, Russ W. Gesch, Swetabh Patel, Frank Forcella, Kyle Aasand, Nicholas Steffl, Burton L. Johnson, M. Scott Wells, and Andrew W. Lenssen. "Establishing winter annual cover crops by interseeding into Maize and Soybean." Agronomy Journal (2020). doi: 10.1002/agj2.20062.</p

    The 2016 Feb 19 outburst of comet 67P/CG: an ESA Rosetta multi-instrument study

    Get PDF
    The ESLAB 50 Symposium - spacecraft at comets from 1P/Halley to 67P/Churyumov-GerasimenkoInternational audienceOn 19 Feb. 2016 nine Rosetta instruments serendipitously observed an outburst of gas and dust from the nucleus of comet 67P/Churyumov-Gerasimenko. Among these instruments were cameras and spectrometers ranging from UV over visible to microwave wavelengths, in-situ gas, dust and plasma instruments, and one dust collector. At 9:40 a dust cloud developed at the edge of an image in the shadowed region of the nucleus. Over the next two hours the instruments recorded a signature of the outburst that significantly exceeded the background. The enhancement ranged from 50% of the neutral gas density at Rosetta to factors >100 of the brightness of the coma near the nucleus. Dust related phenomena (dust counts or brightness due to illuminated dust) showed the strongest enhancements (factors >10). However, even the electron density at Rosetta increased by a factor 3 and consequently the spacecraft potential changed from ∌−16 V to −20 V during the outburst. A clear sequence of events was observed at the distance of Rosetta (34 km from the nucleus): within 15 minutes the Star Tracker camera detected fast particles (∌25 m s−1) while 100 ÎŒm radius particles were detected by the GIADA dust instrument ∌1 hour later at a speed of ~6 m s−1. The slowest were individual mm to cm sized grains observed by the OSIRIS cameras. Although the outburst originated just outside the FOV of the instruments, the source region and the magnitude of the outburst could be determined

    Empagliflozin in Patients with Chronic Kidney Disease

    No full text
    Background The effects of empagliflozin in patients with chronic kidney disease who are at risk for disease progression are not well understood. The EMPA-KIDNEY trial was designed to assess the effects of treatment with empagliflozin in a broad range of such patients. Methods We enrolled patients with chronic kidney disease who had an estimated glomerular filtration rate (eGFR) of at least 20 but less than 45 ml per minute per 1.73 m(2) of body-surface area, or who had an eGFR of at least 45 but less than 90 ml per minute per 1.73 m(2) with a urinary albumin-to-creatinine ratio (with albumin measured in milligrams and creatinine measured in grams) of at least 200. Patients were randomly assigned to receive empagliflozin (10 mg once daily) or matching placebo. The primary outcome was a composite of progression of kidney disease (defined as end-stage kidney disease, a sustained decrease in eGFR to &lt; 10 ml per minute per 1.73 m(2), a sustained decrease in eGFR of &amp; GE;40% from baseline, or death from renal causes) or death from cardiovascular causes. Results A total of 6609 patients underwent randomization. During a median of 2.0 years of follow-up, progression of kidney disease or death from cardiovascular causes occurred in 432 of 3304 patients (13.1%) in the empagliflozin group and in 558 of 3305 patients (16.9%) in the placebo group (hazard ratio, 0.72; 95% confidence interval [CI], 0.64 to 0.82; P &lt; 0.001). Results were consistent among patients with or without diabetes and across subgroups defined according to eGFR ranges. The rate of hospitalization from any cause was lower in the empagliflozin group than in the placebo group (hazard ratio, 0.86; 95% CI, 0.78 to 0.95; P=0.003), but there were no significant between-group differences with respect to the composite outcome of hospitalization for heart failure or death from cardiovascular causes (which occurred in 4.0% in the empagliflozin group and 4.6% in the placebo group) or death from any cause (in 4.5% and 5.1%, respectively). The rates of serious adverse events were similar in the two groups. Conclusions Among a wide range of patients with chronic kidney disease who were at risk for disease progression, empagliflozin therapy led to a lower risk of progression of kidney disease or death from cardiovascular causes than placebo
    corecore