96 research outputs found

    Editorial: Current Insights Into LAMA2 Disease

    Get PDF

    Increased expression of Myosin binding protein H in the skeletal muscle of amyotrophic lateral sclerosis patients

    Get PDF
    AbstractAmyotrophic lateral sclerosis (ALS) is a severe and fatal neurodegenerative disease of still unknown pathogenesis. Recent findings suggest that the skeletal muscle may play an active pathogenetic role. To investigate ALS's pathogenesis and to seek diagnostic markers, we analyzed skeletal muscle biopsies with the differential expression proteomic approach. We studied skeletal muscle biopsies from healthy controls (CN), sporadic ALS (sALS), motor neuropathies (MN) and myopathies (M). Pre-eminently among several differentially expressed proteins, Myosin binding protein H (MyBP-H) expression in ALS samples was anomalously high. MyBP-H is a component of the thick filaments of the skeletal muscle and has strong affinity for myosin, but its function is still unclear. High MyBP-H expression level was associated with abnormal expression of Rho kinase 2 (ROCK2), LIM domain kinase 1 (LIMK1) and cofilin2, that might affect the actin–myosin interaction. We propose that MyBP-H expression level serves, as a putative biomarker in the skeletal muscle, to discriminate ALS from motor neuropathies, and that it signals the onset of dysregulation in actin–myosin interaction; this in turn might contribute to the pathogenesis of ALS

    Loss of glial fibrillary acidic protein (GFAP) impairs Schwann cell proliferation and delays nerve regeneration after damage

    Get PDF
    Axonal loss causes disabling and permanent deficits in many peripheral neuropathies, and may result from inefficient nerve regeneration due to a defective relationship between Schwann cells, axons and the extracellular matrix. These interactions are mediated by surface receptors and transduced by cytoskeletal molecules. We investigated whether peripheral nerve regeneration is perturbed in mice that lack glial fibrillary acidic protein (GFAP), a Schwann-cell-specific cytoskeleton constituent upregulated after damage. Peripheral nerves develop and function normally in GFAP-null mice. However, axonal regeneration after damage was delayed. Mutant Schwann cells maintained the ability to dedifferentiate but showed defective proliferation, a key event for successful nerve regeneration. We also showed that GFAP and the other Schwann-cell-intermediate filament vimentin physically interact in two distinct signaling pathways involved in proliferation and nerve regeneration. GFAP binds integrin αvβ8, which initiates mitotic signals soon after damage by interacting with fibrin. Consistently, ERK phosphorylation was reduced in crushed GFAP-null nerves. Vimentin instead binds integrin α5β1, which regulates proliferation and differentiation later in regeneration, and may compensate for the absence of GFAP in mutant mice. GFAP might contribute to form macro-complexes to initiate mitogenic and differentiating signaling for efficient nerve regeneration

    Urokinase Plasminogen Receptor and the Fibrinolytic Complex Play a Role in Nerve Repair after Nerve Crush in Mice, and in Human Neuropathies

    Get PDF
    Remodeling of extracellular matrix (ECM) is a critical step in peripheral nerve regeneration. In fact, in human neuropathies, endoneurial ECM enriched in fibrin and vitronectin associates with poor regeneration and worse clinical prognosis. Accordingly in animal models, modification of the fibrinolytic complex activity has profound effects on nerve regeneration: high fibrinolytic activity and low levels of fibrin correlate with better nerve regeneration. The urokinase plasminogen receptor (uPAR) is a major component of the fibrinolytic complex, and binding to urokinase plasminogen activator (uPA) promotes fibrinolysis and cell movement. uPAR is expressed in peripheral nerves, however, little is known on its potential function on nerve development and regeneration. Thus, we investigated uPAR null mice and observed that uPAR is dispensable for nerve development, whereas, loss of uPAR affects nerve regeneration. uPAR null mice showed reduced nerve repair after sciatic nerve crush. This was a consequence of reduced fibrinolytic activity and increased deposition of endoneurial fibrin and vitronectin. Exogenous fibrinolysis in uPAR null mice rescued nerve repair after sciatic nerve crush. Finally, we measured the fibrinolytic activity in sural nerve biopsies from patients with peripheral neuropathies. We showed that neuropathies with defective regeneration had reduced fibrinolytic activity. On the contrary, neuropathies with signs of active regeneration displayed higher fibrinolytic activity. Overall, our results suggest that enforced fibrinolysis may facilitate regeneration and outcome of peripheral neuropathies

    Anxiety and depression in Charcot-Marie-Tooth disease: data from the Italian CMT national registry

    Get PDF
    Background There is little information about neuropsychiatric comorbidities in Charcot-Marie-Tooth disease (CMT). We assessed frequency of anxiety, depression, and general distress in CMT.Methods We administered online the Hospital Anxiety-Depression Scale (HADS) to CMT patients of the Italian registry and controls. HADS-A and HADS-D scores >= 11 defined the presence of anxiety/depression and HADS total score (HADS-T) >= 22 of general distress. We analysed correlation with disease severity and clinical characteristics, use of anxiolytics/antidepressants and analgesic/anti-inflammatory drugs.Results We collected data from 252 CMT patients (137 females) and 56 controls. CMT patient scores for anxiety (mean +/- standard deviation, 6.7 +/- 4.8), depression (4.5 +/- 4.0), and general distress (11.5 +/- 8.1) did not differ from controls and the Italian population. However, compared to controls, the percentages of subjects with depression (10% vs 2%) and general distress (14% vs 4%) were significantly higher in CMT patients. We found no association between HADS scores and disease duration or CMT type. Patients with general distress showed more severe disease and higher rate of positive sensory symptoms. Depressed patients also had more severe disease. Nineteen percent of CMT patients took antidepressants/anxiolytics (12% daily) and 70% analgesic/anti-inflammatory drugs. Patients with anxiety, depression, and distress reported higher consumption of anxiolytics/antidepressants. About 50% of patients with depression and/or general distress did not receive any specific pharmacological treatment.Conclusions An appreciable proportion of CMT patients shows general distress and depression. Both correlated with disease severity and consumption of antidepressants/anxiolytics, suggesting that the disease itself is contributing to general distress and depression

    Timed rise from floor as a predictor of disease progression in Duchenne muscular dystrophy: An observational study

    Get PDF
    The role of timed items, and more specifically, of the time to rise from the floor, has been reported as an early prognostic factor for disease progression and loss of ambulation. The aim of our study was to investigate the possible effect of the time to rise from the floor test on the changes observed on the 6MWT over 12 months in a cohort of ambulant Duchenne boys.A total of 487 12-month data points were collected from 215 ambulant Duchenne boys. The age ranged between 5.0 and 20.0 years (mean 8.48 ±2.48 DS).The results of the time to rise from the floor at baseline ranged from 1.2 to 29.4 seconds in the boys who could perform the test. 49 patients were unable to perform the test at baseline and 87 at 12 month The 6MWT values ranged from 82 to 567 meters at baseline. 3 patients lost the ability to perform the 6mwt at 12 months. The correlation between time to rise from the floor and 6MWT at baseline was high (r = 0.6, p<0.01).Both time to rise from the floor and baseline 6MWT were relevant for predicting 6MWT changes in the group above the age of 7 years, with no interaction between the two measures, as the impact of time to rise from the floor on 6MWT change was similar in the patients below and above 350 m. Our results suggest that, time to rise from the floor can be considered an additional important prognostic factor of 12 month changes on the 6MWT and, more generally, of disease progression

    Epitope-Tagged P0Glycoprotein Causes Charcot-Marie-Tooth–Like Neuropathy in Transgenic Mice

    Get PDF
    In peripheral nerve myelin, the intraperiod line results from compaction of the extracellular space due to homophilic adhesion between extracellular domains (ECD) of the protein zero (P0) glycoprotein. Point mutations in this region of P0 cause human hereditary demyelinating neuropathies such as Charcot-Marie-Tooth. We describe transgenic mice expressing a full-length P0 modified in the ECD with a myc epitope tag. The presence of the myc sequence caused a dysmyelinating peripheral neuropathy similar to two distinct subtypes of Charcot-Marie-Tooth, with hypomyelination, altered intraperiod lines, and tomacula (thickened myelin). The tagged protein was incorporated into myelin and was associated with the morphological abnormalities. In vivo and in vitro experiments showed that P0myc retained partial adhesive function, and suggested that the transgene inhibits P0-mediated adhesion in a dominant-negative fashion. These mice suggest new mechanisms underlying both the pathogenesis of P0 ECD mutants and the normal interactions of P0 in the myelin sheath
    • …
    corecore