132 research outputs found

    Endophytic bacterial communities of oilseed rape associate with genotype-specific resistance against Verticillium longisporum

    Get PDF
    Associations of endophytic bacterial community composition of oilseed rape (Brassica napus L.) with quantitative resistance against the soil-borne fungal pathogen Verticillium longisporum was assessed by 16S rRNA gene amplicon sequencing in roots and hypocotyls of four plant lines with contrasting genetic composition in regard to quantitative resistance reactions. The plant compartment was found to be the dominating driving factor for the specificity of bacterial communities in healthy plants. Furthermore, V. longisporum infection triggered a stabilization of phylogenetic group abundance in replicated samples suggesting a host genotype-specific selection. Genotype-specific associations with bacterial phylogenetic group abundance were identified by comparison of plant genotype groups (resistant versus susceptible) and treatment groups (healthy versus V. longisporum-infected) allowing dissection into constitutive and induced directional association patterns. Relative abundance of Flavobacteria, Pseudomonas, Rhizobium and Cellvibrio was associated with resistance/susceptibility. Relative abundance of Flavobacteria and Cellvibrio was increased in resistant genotypes according to their known ecological functions. In contrast, a higher relative abundance of Pseudomonas and Rhizobium, which are known to harbor many species with antagonistic properties to fungal pathogens, was found to be associated with susceptibility, indicating that these groups do not play a major role in genetically controlled resistance of oilseed rape against V. longisporu

    Acinetobacter stercoris sp. nov. isolated from output source of a mesophilic german biogas plant with anaerobic operating conditions

    Get PDF
    The Gram-stain-negative, oxidase negative, catalase positive strain KPC-SM-21T, isolated from a digestate of a storage tank of a mesophilic German biogas plant, was investigated by a polyphasic taxonomic approach. Phylogenetic identification based on the nearly full-length 16S rRNA gene revealed highest gene sequence similarity to Acinetobacter baumannii ATCC 19606T (97.0%). Phylogenetic trees calculated based on partial rpoB and gyrB gene sequences showed a distinct clustering of strain KPC-SM-21T with Acinetobacter gerneri DSM 14967T = CIP 107464T and not with A. baumannii, which was also supported in the five housekeeping genes multilocus sequence analysis based phylogeny. Average nucleotide identity values between whole genome sequences of strain KPC-SM-21T and next related type strains supported the novel species status. The DNA G + C content of strain KPC-SM-21T was 37.7 mol%. Whole-cell MALDI-TOF MS analysis supported the distinctness of the strain to type strains of next related Acinetobacter species. Predominant fatty acids were C18:1 ω9c (44.2%), C16:0 (21.7%) and a summed feature comprising C16:1 ω7c and/or iso-C15:0 2-OH (15.3%). Based on the obtained genotypic, phenotypic and chemotaxonomic data we concluded that strain KPC-SM-21T represents a novel species of the genus Acinetobacter, for which the name Acinetobacter stercoris sp. nov. is proposed. The type strain is KPC-SM-21T (= DSM 102168T = LMG 29413T).Peer Reviewe

    High-Throughput Cultivation for the Selective Isolation of Acidobacteria From Termite Nests

    Get PDF
    Microbial communities in the immediate environment of socialized invertebrates can help to suppress pathogens, in part by synthesizing bioactive natural products. Here we characterized the core microbiomes of three termite species (genus Coptotermes) and their nest material to gain more insight into the diversity of termite-associated bacteria. Sampling a healthy termite colony over time implicated a consolidated and highly stable microbiome, pointing toward the fact that beneficial bacterial phyla play a major role in termite fitness. In contrast, there was a significant shift in the composition of the core microbiome in one nest during a fungal infection, affecting the abundance of well-characterized Streptomyces species (phylum Actinobacteria) as well as less-studied bacterial phyla such as Acidobacteria. High-throughput cultivation in microplates was implemented to isolate and identify these less-studied bacterial phylogenetic group. Amplicon sequencing confirmed that our method maintained the bacterial diversity of the environmental samples, enabling the isolation of novel Acidobacteriaceae and expanding the list of cultivated species to include two strains that may define new species within the genera Terracidiphilus and Acidobacterium

    Proposal for a new classification of a deep branching bacterial phylogenetic lineage: Transfer of Coprothermobacter proteolyticus and Coprothermobacter platensis to Coprothermobacteraceae fam. nov., within Coprothermobacterales ord. nov., Coprothermobacteria classis nov. and Coprothermobacterota phyl. nov. and emended description of the family Thermodesulfobiaceae

    Get PDF
    The genus Coprothermobacter (initially named Thermobacteroides) is currently placed within the phylum Firmicutes. Early 16S rRNA gene based phylogenetic studies pointed out the great differences between Coprothermobacter and other members of the Firmicutes, revealing that it constitutes a new deep branching lineage. Over the years, several studies based on 16S rRNA gene and whole genome sequences have indicated that Coprothermobacter is very distant phylogenetically to all other bacteria, supporting its placement in a distinct deeply rooted novel phylum. In view of this, we propose its allocation to the new family Coprothermobacteraceae within the novel order Coprothermobacterales, the new class Coprothermobacteria, and the new phylum Coprothermobacterota, and an emended description of the family Thermodesulfobiaceae.Fil: Pavan, Maria Elisa. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Pavan, Esteban E.. Politecnico di Milano; ItaliaFil: Glaeser, Stefanie P.. Universitat Giessen; AlemaniaFil: Etchebehere, Claudia. Instituto de Investigaciones Biológicas "Clemente Estable"; UruguayFil: Kämpfer, Peter. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Pettinari, María Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: López, Nancy Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentin

    Coetzeea brasiliensis gen. Nov., sp. nov. isolated from larvae of Anopheles darlingi

    Get PDF
    A Gram-stain-negative, rod-shaped strain, Braz8T, isolated from larvae of Anopheles darlingi was investigated using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain Braz8T was related most closely to species of the genus Thorsellia, with 95.6, 96.5 and 96.6% similarity to the type strains of Thorsellia anophelis, Thorsellia kandunguensis and Thorsellia kenyensis, respectively, and formed a separate branch in the phylogenetic tree next to the monophyletic cluster of the genus Thorsellia. Chemotaxonomic data supported the allocation of the strain to the family Thorselliaceae. The major fatty acids were C18:1ω7c, C16:0 and C14:0. The quinone system was composed of ubiquinones Q-8 and Q-7 (1: 0.3), the predominant polar lipids were diphosphatidylglycerol and phosphatidylglycerol, and the polyamine pattern showed the major compound putrescine. However, qualitative and quantitative differences in the major polyamine, polar lipid profile and fatty acid patterns distinguished strain Braz8T from species of the genus Thorsellia. Phylogenetic analysis based on 16S rRNA gene sequences, average nucleotide identity, DNA-DNA hybridization, multilocus sequence analysis as well as physiological and biochemical tests distinguished strain Braz8T both genotypically and phenotypically from the three Thorsellia species but also showed its placement in the family Thorselliaceae. Thus, strain Braz8T is considered to represent a novel species of a new genus most closely related to the genus Thorsellia, for which the name Coetzeea brasiliensis gen. nov., sp. nov. is proposed. The type strain of Coetzeea brasiliensis is Braz8T (=LMG 29552T=CIP 111088T). © 2016 IUMS

    Organic and conventional farming systems shape soil bacterial community composition in tropical arable farming

    Get PDF
    Soils present a limited resource for agricultural production and bear a vast diversity of organisms crucial for crop health and the provision of ecosystem services. There is growing evidence that agricultural practices affect soil microbial community structure and function but currently, there is a knowledge gap when it comes to tropical arable farming systems. In this study, we investigated the long-term impact of organic and conventional production systems on bacterial communities in two field trial located on a rhodic and humic nitisol in the Central Highlands of Kenya. The field sites operate on a full factorial design, testing farming systems (organic vs conventional) and input levels (high vs low). Including four field replication we assessed soil bacterial community structure via amplicon sequencing of the 16S rRNA gene and soils capacity for nitrification and nitrous oxide reduction via qPCR of functional genes (bacterial and archaeal amoA, nosZ) after 12 years of distinct management and before the start of the 5th three-year crop rotation period in 2019. The abundances of amoA bearing nitrifiers and nosZ bearing nitrous oxide reducers were enhanced in the high input organic production system on humic but not in rhodic nitisols. For both soil types, high input organic production system resulted in distinct bacterial community structure with enhanced bacterial richness compared to conventional and low input production systems. In rhodic and humic nitisols 160 and 84 OTUs were found to be indicative for organic production system at high input levels organic. Taxa associated with this system were identified as potential primary decomposers or symbionts related to plant nitrogen fixation, suggesting organic fertilization strategies such as manure composting as major driver for changes in soil bacterial community structure. This study reveals that organic production systems at high input levels on tropical nitisols translates to distinct soil bacterial communities with increased capacity for soil processes that are crucial for crop nutrient supply

    Genome Sequence of Paracoccus contaminans LMG 29738T, Isolated from a Water Microcosm

    Get PDF
    We announce here the complete genome sequence of Paracoccus contaminans LMG 29738T, which we recently isolated from a contaminated water microcosm. The genome consists of a 2.94-Mb chromosome and a 94-kb plasmid. To our knowledge, we provide the first DNA methylation analysis of a Paracoccus species

    Contrasting Effects of Singlet Oxygen and Hydrogen Peroxide on Bacterial Community Composition in a Humic Lake

    Get PDF
    Light excitation of humic matter generates reactive oxygen species (ROS) in surface waters of aquatic ecosystems. Abundant ROS generated in humic matter rich lakes include singlet oxygen (O-1(2)) and hydrogen peroxide (H2O2). Because these ROS differ in half-life time and toxicity, we compared their effects on microbial activity (C-14-Leucine incorporation) and bacterial community composition (BCC) in surface waters of humic Lake Grosse Fuchskuhle (North-eastern Germany). For this purpose, experiments with water samples collected from the lake were conducted in July 2006, September 2008 and August 2009. Artificially increased O-1(2) and H2O2 concentrations inhibited microbial activity in water samples to a similar extent, but the effect of the respective ROS on BCC varied strongly. BCC analysis by 16S rRNA gene clone libraries and RT-PCR DGGE revealed ROS specific changes in relative abundance and activity of major bacterial groups and composition of dominating phylotypes. These changes were consistent in the three experiments performed in different years. The relative abundance of Polynucleobacter necessarius, Limnohabitans-related phylotypes (Betaproteobacteria), and Novosphingobium acidiphilum (Alphaproteobacteria) increased or was not affected by photo-sensitized O-1(2) exposure, but decreased after H2O2 exposure. The opposite pattern was found for Actinobacteria of the freshwater AcI-B cluster which were highly sensitive to O-1(2) but not to H2O2 exposure. Furthermore, group-specific RT-PCR DGGE analysis revealed that particle-attached P. necessarius and Limnohabitans-related phylotypes exhibit higher resistance to O-1(2) exposure compared to free-living populations. These results imply that O-1(2) acts as a factor in niche separation of closely affiliated Polynucleobacter and Limnohabitans-related phylotypes. Consequently, oxidative stress caused by photochemical ROS generation should be regarded as an environmental variable determining abundance, activity, and phylotype composition of environmentally relevant bacterial groups, in particular in illuminated and humic matter rich waters

    Contrasting Effects of Singlet Oxygen and Hydrogen Peroxide on Bacterial Community Composition in a Humic Lake

    No full text
    Light excitation of humic matter generates reactive oxygen species (ROS) in surface waters of aquatic ecosystems. Abundant ROS generated in humic matter rich lakes include singlet oxygen (O-1(2)) and hydrogen peroxide (H2O2). Because these ROS differ in half-life time and toxicity, we compared their effects on microbial activity (C-14-Leucine incorporation) and bacterial community composition (BCC) in surface waters of humic Lake Grosse Fuchskuhle (North-eastern Germany). For this purpose, experiments with water samples collected from the lake were conducted in July 2006, September 2008 and August 2009. Artificially increased O-1(2) and H2O2 concentrations inhibited microbial activity in water samples to a similar extent, but the effect of the respective ROS on BCC varied strongly. BCC analysis by 16S rRNA gene clone libraries and RT-PCR DGGE revealed ROS specific changes in relative abundance and activity of major bacterial groups and composition of dominating phylotypes. These changes were consistent in the three experiments performed in different years. The relative abundance of Polynucleobacter necessarius, Limnohabitans-related phylotypes (Betaproteobacteria), and Novosphingobium acidiphilum (Alphaproteobacteria) increased or was not affected by photo-sensitized O-1(2) exposure, but decreased after H2O2 exposure. The opposite pattern was found for Actinobacteria of the freshwater AcI-B cluster which were highly sensitive to O-1(2) but not to H2O2 exposure. Furthermore, group-specific RT-PCR DGGE analysis revealed that particle-attached P. necessarius and Limnohabitans-related phylotypes exhibit higher resistance to O-1(2) exposure compared to free-living populations. These results imply that O-1(2) acts as a factor in niche separation of closely affiliated Polynucleobacter and Limnohabitans-related phylotypes. Consequently, oxidative stress caused by photochemical ROS generation should be regarded as an environmental variable determining abundance, activity, and phylotype composition of environmentally relevant bacterial groups, in particular in illuminated and humic matter rich waters
    corecore