88 research outputs found

    The relationship between physical activity and lymphoma: a systematic review and meta analysis

    Get PDF
    BACKGROUND: The literature suggests an increased risk between anthropometrics including higher body mass index and lymphoma incidence; however, the association with physical activity remains unclear. A systematic review/meta-analysis was therefore performed to examine this association with physical activity (total, recreational or occupational). METHODS: PubMed, Web of Science and Embase were reviewed from inception to October 2019 identifying relevant observational studies. Non-Hodgkin lymphoma (NHL) including subtypes diffuse large B cell lymphoma, follicular lymphoma and chronic lymphocytic leukemia/small lymphocytic lymphoma, and Hodgkin lymphoma (HL) were analyzed. Included studies reported activity, lymphoma cases, effect size and variability measures, and were restricted to human subjects of any age. Data was pooled generating summary relative risk (RR) estimates with 95% confidence intervals (CI) using random-effects models with primary outcome of histologically confirmed incident lymphoma. RESULTS: One thousand four hundred studies were initially identified with 18 studies (nine cohort, nine case-control) included in final analysis. Comparing highest vs. lowest activity categories was protective for all lymphoma (RR 0.89, 95%CI 0.81-0.98). Sensitivity analysis demonstrated effect persistence within case-control studies (RR 0.82, 95% CI 0.71-0.96), but not cohort studies (RR 0.95, 95%CI 0.84-1.07). Borderline protective effect was seen for NHL (RR 0.92, 95%CI 0.84-1.00), but not HL (RR 0.72, 95%CI 0.50-1.04). Analysis by NHL subtype or gender showed no effect. Dose response analysis demonstrated a protective effect (p = 0.034) with a 1% risk reduction per 3 MET hours/week (RR 0.99, 95%CI 0.98-1.00). CONCLUSIONS: Physical activity may have a protective effect against lymphoma development; further studies are required to generate recommendations regarding health policy. TRIAL REGISTRATION: This study was registered prospectively at PROSPERO: CRD42020156242

    A 7-Step Guideline for Qualitative Synthesis and Meta-Analysis of Observational Studies in Health Sciences

    Get PDF
    Objectives: To provide a step-by-step, easy-to-understand, practical guide for systematic review and meta-analysis of observational studies. Methods: A multidisciplinary team of researchers with extensive experience in observational studies and systematic review and meta-analysis was established. Previous guidelines in evidence synthesis were considered. Results: There is inherent variability in observational study design, population, and analysis, making evidence synthesis challenging. We provided a framework and discussed basic meta-analysis concepts to assist reviewers in making informed decisions. We also explained several statistical tools for dealing with heterogeneity, probing for bias, and interpreting findings. Finally, we briefly discussed issues and caveats for translating results into clinical and public health recommendations. Our guideline complements "A 24-step guide on how to design, conduct, and successfully publish a systematic review and meta-analysis in medical research" and addresses peculiarities for observational studies previously unexplored. Conclusion: We provided 7 steps to synthesize evidence from observational studies. We encourage medical and public health practitioners who answer important questions to systematically integrate evidence from observational studies and contribute evidence-based decision-making in health sciences

    The MEDEA childhood asthma study design for mitigation of desert dust health effects: implementation of novel methods for assessment of air pollution exposure and lessons learned

    Get PDF
    Background: Desert dust events in Mediterranean countries, originating mostly from the Sahara and Arabian deserts, have been linked to climate change and are associated with significant increase in mortality and hospital admissions from respiratory causes. The MEDEA clinical intervention study in children with asthma is funded by EU LIFE+ program to evaluate the efficacy of recommendations aiming to reduce exposure to desert dust and related health effects. Methods: This paper describes the design, methods, and challenges of the MEDEA childhood asthma study, which is performed in two highly exposed regions of the Eastern Mediterranean: Cyprus and Greece-Crete. Eligible children are recruited using screening surveys performed at primary schools and are randomized to three parallel intervention groups: a) no intervention for desert dust events, b) interventions for outdoor exposure reduction, and c) interventions for both outdoor and indoor exposure reduction. At baseline visits, participants are enrolled on MEDena® Health-Hub, which communicates, alerts and provides exposure reduction recommendations in anticipation of desert dust events. MEDEA employs novel environmental epidemiology and telemedicine methods including wearable GPS, actigraphy, health parameters sensors as well as indoor and outdoor air pollution samplers to assess study participants’ compliance to recommendations, air pollutant exposures in homes and schools, and disease related clinical outcomes. Discussion: The MEDEA study evaluates, for the first time, interventions aiming to reduce desert dust exposure and implement novel telemedicine methods in assessing clinical outcomes and personal compliance to recommendations. In Cyprus and Crete, during the first study period (February–May 2019), a total of 91 children participated in the trial while for the second study period (February–May 2020), another 120 children completed data collection. Recruitment for the third study period (February–May 2021) is underway. In this paper, we also present the unique challenges faced during the implementation of novel methodologies to reduce air pollution exposure in children. Engagement of families of asthmatic children, schools and local communities, is critical. Successful study completion will provide the knowledge for informed decision-making both at national and international level for mitigating the health effects of desert dust events in South-Eastern Europe. Trial registration: ClinicalTrials.gov: NCT03503812, April 20, 2018

    Associations Between Extreme Temperatures and Cardiovascular Cause-Specific Mortality: Results From 27 Countries.

    Get PDF
    BACKGROUND Cardiovascular disease is the leading cause of death worldwide. Existing studies on the association between temperatures and cardiovascular deaths have been limited in geographic zones and have generally considered associations with total cardiovascular deaths rather than cause-specific cardiovascular deaths. METHODS We used unified data collection protocols within the Multi-Country Multi-City Collaborative Network to assemble a database of daily counts of specific cardiovascular causes of death from 567 cities in 27 countries across 5 continents in overlapping periods ranging from 1979 to 2019. City-specific daily ambient temperatures were obtained from weather stations and climate reanalysis models. To investigate cardiovascular mortality associations with extreme hot and cold temperatures, we fit case-crossover models in each city and then used a mixed-effects meta-analytic framework to pool individual city estimates. Extreme temperature percentiles were compared with the minimum mortality temperature in each location. Excess deaths were calculated for a range of extreme temperature days. RESULTS The analyses included deaths from any cardiovascular cause (32 154 935), ischemic heart disease (11 745 880), stroke (9 351 312), heart failure (3 673 723), and arrhythmia (670 859). At extreme temperature percentiles, heat (99th percentile) and cold (1st percentile) were associated with higher risk of dying from any cardiovascular cause, ischemic heart disease, stroke, and heart failure as compared to the minimum mortality temperature, which is the temperature associated with least mortality. Across a range of extreme temperatures, hot days (above 97.5th percentile) and cold days (below 2.5th percentile) accounted for 2.2 (95% empirical CI [eCI], 2.1-2.3) and 9.1 (95% eCI, 8.9-9.2) excess deaths for every 1000 cardiovascular deaths, respectively. Heart failure was associated with the highest excess deaths proportion from extreme hot and cold days with 2.6 (95% eCI, 2.4-2.8) and 12.8 (95% eCI, 12.2-13.1) for every 1000 heart failure deaths, respectively. CONCLUSIONS Across a large, multinational sample, exposure to extreme hot and cold temperatures was associated with a greater risk of mortality from multiple common cardiovascular conditions. The intersections between extreme temperatures and cardiovascular health need to be thoroughly characterized in the present day-and especially under a changing climate

    Associations Between Extreme Temperatures and Cardiovascular Cause-Specific Mortality: Results From 27 Countries

    Get PDF
    Background: Cardiovascular disease is the leading cause of death worldwide. Existing studies on the association between temperatures and cardiovascular deaths have been limited in geographic zones and have generally considered associations with total cardiovascular deaths rather than cause-specific cardiovascular deaths. Methods: We used unified data collection protocols within the Multi-Country Multi-City Collaborative Network to assemble a database of daily counts of specific cardiovascular causes of death from 567 cities in 27 countries across 5 continents in overlapping periods ranging from 1979 to 2019. City-specific daily ambient temperatures were obtained from weather stations and climate reanalysis models. To investigate cardiovascular mortality associations with extreme hot and cold temperatures, we fit case-crossover models in each city and then used a mixed-effects meta-analytic framework to pool individual city estimates. Extreme temperature percentiles were compared with the minimum mortality temperature in each location. Excess deaths were calculated for a range of extreme temperature days. Results: The analyses included deaths from any cardiovascular cause (32 154 935), ischemic heart disease (11 745 880), stroke (9 351 312), heart failure (3 673 723), and arrhythmia (670 859). At extreme temperature percentiles, heat (99th percentile) and cold (1st percentile) were associated with higher risk of dying from any cardiovascular cause, ischemic heart disease, stroke, and heart failure as compared to the minimum mortality temperature, which is the temperature associated with least mortality. Across a range of extreme temperatures, hot days (above 97.5th percentile) and cold days (below 2.5th percentile) accounted for 2.2 (95% empirical CI [eCI], 2.1–2.3) and 9.1 (95% eCI, 8.9–9.2) excess deaths for every 1000 cardiovascular deaths, respectively. Heart failure was associated with the highest excess deaths proportion from extreme hot and cold days with 2.6 (95% eCI, 2.4–2.8) and 12.8 (95% eCI, 12.2–13.1) for every 1000 heart failure deaths, respectively. Conclusions: Across a large, multinational sample, exposure to extreme hot and cold temperatures was associated with a greater risk of mortality from multiple common cardiovascular conditions. The intersections between extreme temperatures and cardiovascular health need to be thoroughly characterized in the present day—and especially under a changing climate.Clinical Perspective_ What Is New?: This study provided evidence from what we believe is the largest multinational dataset ever assembled on cardiovascular outcomes and environmental exposures; Extreme hot and cold temperatures were associated with increased risk of death from any cardiovascular cause, ischemic heart disease, stroke, and heart failure; For every 1000 cardiovascular deaths, 2 and 9 excess deaths were attributed to extreme hot and cold days, respectively. _ What Are the Clinical Implications?: Extreme temperatures from a warming planet may become emerging priorities for public health and preventative cardiology; The findings of this study should prompt professional cardiology societies to commission scientific statements on the intersections of extreme temperature exposure and cardiovascular health.This study was supported by the Kuwait Foundation for the Advancement of Science (CB21-63BO-01); the US Environmental Protection Agency (RD-835872); Harvard Chan National Institute of Environmental Health Sciences Center for Environmental Health (P01ES009825); the UK Medical Research Council (MR/R013349/1); the UK Natural Environment Research Council (NE/R009384/1); the European Union’s Horizon 2020 Project Exhaustion (820655); the Australian National Health and Medical Research Council (APP 2000581, APP 1109193, APP 1163693); the National Institute of Environmental Health Sciences–funded HERCULES Center (P30ES019776); the MCIN/AEI/10.13039/501100011033 (grant CEX2018-000794-S); the Taiwanese Ministry of Science and Technology (MOST 109–2621-M-002–021); the Environmental Restoration and Conservation Agency, Environment Research and Technology Development Fund (JPMEERF15S11412); the São Paulo Research Foundation; and Fundação para a Ciência e a Tecnlogia (SFRH/BPD/115112/2016)info:eu-repo/semantics/publishedVersio

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Dataset

    No full text

    Risk factors for preterm birth: an umbrella review

    No full text

    Umbrella reviews: what they are and why we need them

    No full text
    corecore