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Objectives: To provide a step-by-step, easy-to-understand, practical guide for
systematic review and meta-analysis of observational studies.

Methods: A multidisciplinary team of researchers with extensive experience in
observational studies and systematic review and meta-analysis was established.
Previous guidelines in evidence synthesis were considered.

Results: There is inherent variability in observational study design, population, and
analysis, making evidence synthesis challenging. We provided a framework and
discussed basic meta-analysis concepts to assist reviewers in making informed
decisions. We also explained several statistical tools for dealing with heterogeneity,
probing for bias, and interpreting findings. Finally, we briefly discussed issues and
caveats for translating results into clinical and public health recommendations. Our
guideline complements “A 24-step guide on how to design, conduct, and successfully
publish a systematic review and meta-analysis in medical research” and addresses
peculiarities for observational studies previously unexplored.

Conclusion:We provided 7 steps to synthesize evidence from observational studies. We
encourage medical and public health practitioners who answer important questions to
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systematically integrate evidence from observational studies and contribute evidence-
based decision-making in health sciences.

Keywords: cross-sectional studies, observational study, evidence-based approach, cohort studies, systematic
review and meta-analysis

INTRODUCTION

Observational studies are more common than experimental
studies (1, 2). Moreover, many systematic reviews and meta-
analyses (SRMA) integrate evidence from observational
studies. When undertaking synthesis and MA, it is crucial
to understand properties, methodologies, and limitations
among different observational study designs and
association estimates derived from these studies. Different
study designs influence variability in results among studies,
and thus heterogeneity and conclusions (Supplementary
Material S1). Specific study type considerations and
methodological features include (among others): study
participant selection and study sample representation;
measurement and characterization methods for exposure
and extent of information bias; potential confounders and
outcomes; design-specific contributions leading to bias; and
methods used to analyze the data. Furthermore,
observational studies may have a wider array of selective
reporting biases than randomized trials. Most observational
studies are unregistered, and typically more degrees of
analytical flexibility and choice of analyses report such
designs compared with randomized trials, leading to more
variable results and potential bias (3). These methodological
components influence study design suitability and result in
trustworthiness for SRMA. Indeed, evidence shows that MAs
of observational studies often suffer methodologically (1),
and despite statistical or other summary result significance,
many observational studies demonstrate low credibility (2).
Observational data often complement evidence from
randomized controlled trials (RCTs) when shaping public
health and clinical guidelines and recommendations. Yet,
observational data for informing public health and clinical
decision-making are inconsistently available in SRMAs.
Therefore, we provide concise guidance for combining
results in a MA of observational studies.

METHODS

The current guideline was developed by a multidisciplinary
team of researchers with extensive experience in SRMAs. The
guide extends a previous guideline (4) and provides further
recommendations for synthesizing and pooling results from
observational data. For this, we considered previous
guidances for SRMA of observational studies (5–7), and
acknowledged several contentious points concerning
optimal methods for MA of observational studies (8). We
explicitly address such uncertainties and offer definitive
recommendations for uncontested best practices. Finally,

we offer guidance relevant to diverse types of
observational data subject to SRMA. However, the range of
observational data types, such as adverse drug events, genetic
associations, effectiveness studies, nutritional associations,
air pollution, and prevalence studies, is broad. Therefore,
proper evidence synthesis requires knowledge of best SR
practices and field-specific subject matter.

RESULTS

Step-by-Step Guide
The overall step-by-step guidance is visualized in Figure 1.

Step 1. Decide Whether Narrative or Descriptive Data
Synthesis or Meta-Analysis is Suitable
When summarizing evidence from observational studies,
narrative or descriptive data synthesis is desirable when: a) the
number of studies is insufficient to perform MA; b) essential
information to combine results from different studies is missing
across studies; or c) the evidence is judged as too heterogeneous,
such as clinical heterogeneity, based on a priori decision. We
provide tips for determining when clinical heterogeneity is too
high in Figure 2. We caution early, careful thinking and decision-
making about handling complex patterns of bias in available
evidence and pre-specified protocols. Otherwise, observed results
can drive included study choices prematurely.

a. How many studies are sufficient for MA? MA is possible if
association estimates from two studies are available. However,
deciding to perform aMA (9)—see Step 2 for choosing statistical
models—is influenced by differences in study design, exposure,
adjustment, outcome assessment, study population, risk of bias,
and other methodological features across studies.

b. What information is essential for MA? To combine study
results, measurements of association estimates from
individual studies and standard errors or 95% confidence
intervals (CIs) of the estimate are needed. For details about
combining different estimates and information needed, see
Step 3 and Supplementary Table S1. We suggest contacting
the corresponding authors for missing essential information.

c. When is heterogeneity too large? Without widely accepted,
automated quantitative measures to grade it, determining
whether clinical or methodological heterogeneity is too
high is subjective. Heterogeneity can result from
methodological differences, such as different study designs,
analytical assessments of exposures/outcomes, or variations
among populations across different studies; it requires
restricting MA based on study population, design,
exposure, or outcome characteristics. To see how statistical
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heterogeneity is explored quantitatively using I2 or Cochran Q
statistics, see Step 6. Deciding to perform MA should not be
based on statistical heterogeneity.

d. Do “study quality” and methodological rigor determine
whether to meta-analyze the evidence? “Study quality” is a
complex term; it involves assessing methodological rigor (what
was done) and completeness or accuracy of reporting (what is
reported to have been done) within individual studies. Established
and validated risk of bias tools can evaluate individual studies
included in SR, which can inform the synthesis and interpretation
of results. Poormethodological rigor and incomplete or inaccurate
reporting of individual studies can bias synthesized results and
limitMA interpretation and generalizability. Thus, potential biases
across included studies should be systematically assessed. Various

tools and scales can be used to assess methodological rigor and
reporting.We summarize these scales in SupplementaryMaterial
S2, Supplementary Table S2.

e. Does the study design determine whether to meta-analyze the
evidence?

Including all study designs in SRs reduces subjective
interpretations of potential biases and inappropriate study
exclusions (6); however, the decision to meta-analyze results
across all study designs depends on research questions. For
example, cross-sectional designs are likely inappropriate for
research questions dealing with temporality but could be used
to summarize prevalence estimates of diseases. If different study
designs are included in SRs, address heterogeneity by study

FIGURE 1 | The 7-Step Guide which illustrates the steps for synthesis and meta-analysis of observational studies (Bern, Switzerland. 2023).
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design in the MA step and perform subgroup analyses by study
design otherwise, misleading results can follow (10).

Overall, when deciding to remove studies from MA due to
poormethodology, it is crucial to evaluate the extent of bias across
available evidence (i.e., bias in single or multiple studies). If all
available studies provide biased estimates, MA simply provide a
composite of these errors with low-reliability results perpetuating
these biases. If only a proportion of studies are biased and
subsequently included in MA, stratification by methodological
features may be a solution. However, even with enough studies in
the synthesis to perform subgroup analysis, it is informative only.
More details are provided in Steps 6 and 7.

After carefully considering Step 1 items a–e, if MA is not
feasible or meaningful, summarize findings qualitatively with
narrative or descriptive data synthesis. Descriptive data
synthesis is not necessarily worse or lower quality compared
with MA. Depending on the number of included studies and
methodological differences across studies in a descriptive
synthesis, writing a narrative data summary can prove more
difficult compared with MA. In Table 1, we provide insights for
simplifying the process of descriptive data synthesis. We use
examples, such as grouping studies and presenting data from
previously published SRs summarizing evidence without MA
(12–15).

We suggest providing graphical summaries of important
findings, especially when tables and figures amass complex,
convoluted information [e.g., second figure of SR by Oliver-
Williams et al. (12)]. If MA is inappropriate, another graphical
option is a forest plot without the overall association
estimate15—a display that promotes reader insights on
association estimate size and 95% CIs across studies. We also
recommend synthesis without MA (SWiM) reporting guidelines
(11) to assist in reporting findings from SRs without MA. Finally,
although narrative synthesis of evidence is the default choice
when performing an SR of qualitative research, it extends beyond

the scope of our guidelines. Several guidelines exist on SR of
qualitative studies (16, 17).

Step 2. Understand the Concept of Meta-Analysis and
Different Models
Combining results from different observational studies can lead
to more comprehensive evaluations of evidence, greater external
validity, and higher precision due to larger sample sizes.
However, higher precision can be misleading, especially if
studies are biased.

MA mathematically combines different study results (18); it
computes summary statistics for each study, then further
summarizes and interprets study-level summary statistics.
Summary association estimates allow for overall judgments on
investigated associations; however, the interpretation depends on
assumptions and models used when combining data across
studies. Observational studies are far more susceptible to
confounding and bias; therefore, they have additional degrees
of imprecision beyond observed CIs. Furthermore, many
associations differ by study characteristics and exposure levels
and types; thus, true effect size genuinely varies. Weighting
studies in meta-analyses typically considers study imprecision
and heterogeneity between studies, yet some also weigh quality
scores (19). We generally discourage including quality scores
because they are subjective, and it is difficult to summarize quality
in a single number or weight. Nevertheless, when combining
studies of different designs or identifying large discrepancies in
risks of bias, additional subgroup or sensitivity analyses such as
excluding studies with lower credibility and identifying influences
of such studies in summary estimates. More sophisticated
methods try to “correct” results for different types of bias
related to internal validity and generalizability features in each
study (20). Yet, they are not widely used and worthy of skepticism
for claims to correct bias (21).

Fixed-Effects Model
If a single effect underlies an investigated association and all
studies are homogenous, obtain a summary estimate by weighted
mean by measuring that effect in fixed-effects models. The
weights reflect each study’s precision. Precision is the degree
of resemblance among study results if the study is repeated under
similar circumstances.

Estimate precision is mainly related to variations of random
error, such as sample size or the number of events of interest;
measurement uncertainty—accurate and calibrated
measurements—and the nature of measured phenomenon
(where some events are simply more variable than others in
occurrence) also affect estimate precision. The precision of
estimates is expressed as the inverse variance of association
estimates—or 1 divided by the square root of its standard
error. Summary estimates are referred to as the fixed-effects
association estimate. Fixed-effects models assume all studies
have a common true (“fixed”) overall effect and any
differences in observed estimates between studies are due to
random error—a strong assumption typically unsuitable for
most observational data.

FIGURE 2 | Factors to consider on whether to perform a meta-analysis
or not (Bern, Switzerland. 2023).
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Random-Effects Model
The random-effects model allows each study its own exposure or
treatment association estimate with distributed associations
varied across different individual and population
characteristics, as well as dependent on exposure and
treatment characteristics, such as dose or category. We expect
sufficient statistical commonalities across studies when
combining information; however, identical true association
estimates are unnecessary for included studies. For example,
the association between hormone therapy and the risk of
cardiovascular disease among women depends on menopausal
status and the type of hormone therapy. Although studies
investigating hormone therapy and cardiovascular disease have
exposure, population, and outcome in common, there are
different true effects across different reproductive stages and
formulations of hormone therapies (22).

The random-effects model is an extension of the fixed-effects
model, where each study estimate combines the true total effect and
difference from variation between studies and random errors.
Therefore, an additional parameter represents variability
between studies around the true common effect and
distinguishes random-effects models from fixed-effects models.
To simplify, random-effects models distribute true effect sizes
represented across different studies. The combined random-
effects estimates represent the mean of the population of true
effects. Thus, we can generalize findings to broader phenotypes and
populations beyond specific, well-defined phenotypes and
populations analyzed in individual studies. For instance, an MA
of observational studies on hormone therapy and cardiovascular

disease provides an overall measure of association estimates
between hormone therapy and cardiovascular disease; however,
random-effects estimates are summary estimates of the overall true
measure of association estimates of different types of hormone
therapies and true measured of observed association estimates
among different women’s reproductive stages. As a result, random-
effects models incorporate higher degrees of heterogeneity between
studies. It also gives proportionally higher weights to smaller
studies and lower weights to larger studies than the fixed-effects
association estimates, resulting in differences in summary estimates
between the two models.

The random-effects model incorporates study variance and
results to wider CIs. However, random and fixed-effects estimates
would be similar, with no observed between-study variability and
zero estimated between-study variance. There are many variants
of random-effects models (23). Inverse variance and
DerSimonian-Laird methods are the most widely used, yet
these are not methods with the best statistical properties in
most circumstances. Therefore, accurate working knowledge of
alternatives and choosing the best-fit methods is essential (23).

We previously compared different characteristics of fixed-
effects vs. random-effects in Supplementary Table S3. Since
observational studies typically involve variable study
populations, different levels of adjustments and analyses than
RCTs, and participants under different conditions, they are
usually better represented by random-effects than fixed-effects
models. It is even more true when different study designs are
combined or when observational studies are combined with
RCTs. However, random-effects models also come with several

TABLE 1 | Steps to consider when conducting a narrative summary of evidence (Bern, Switzerland. 2023).

Step 1 Group studies Choose an appropriate grouping rationale
A. PECO [population (male only participants vs. mixed population; healthy vs. individuals with comorbidities; animal
vs. human evidence)], exposure/comparison and outcome (reported on continuous vs. dichotomized scale)
B. Study design (cross-sectional vs. longitudinal studies)
C. Risk of bias (low quality vs. moderate or high-quality evidence)
D. Association estimates: consider type (beta coefficients, risk ratios, odds ratios, hazard ratios, etc.) and direction of
association (higher risk in exposed population vs. no association). To accurately interpret p-values and 95%
confidence intervals, identify and understand the direction of associations

Step 2 Follow the same synthesis
consistently

A. Create additional tables using study groupings to find patterns among studies. For example, provide separate
tables for cross-sectional and cohort studies.
B. Convert association estimates if possible. For comparison among studies, convert odds ratios to standardized
mean differences
C. Present most interesting findings using graphical methods, such as arrows indicating increased or decreased risk
between groups
D. If meta-analysis is not possible, use the data extraction sheet to conduct minimal statistical analyses. For example,
calculate total numbers of study participants, mean age, mean number of male participants, or other relevant study
population, exposure, or outcome characteristic

Step 3 Report findings clearly A. Use appropriate language
B. Keep reporting style uniform across results section. For instance, if studies are grouped, start with a paragraph
explaining grouping variables
C. Provide summary tables and/or figures to support findings reported in results section

Step 4 Discuss findings objectively Summarizing what best reflects reviewed evidence can be challenging
A. Report based on grouping parameters from Step 1. Graphical summaries support interpreting findings (especially
when analyzing many methodologically different studies)
B. Discuss methodological strengths and limitations of reviewed evidence. For example, levels of adjustment across
studies, heterogeneity that precluded quantitative synthesis, or risks of bias
C. Identify literature gaps and provide directions for future research
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caveats. For example, estimates of between-study variance in
calculations of limited numbers of studies are very uncertain;
different random-effects methods yield substantially different
results; in the presence of publication selection bias (mostly
affecting smaller studies), random-effects models give even
more importance to smaller studies and summary estimates
are more biased than fixed-effects models. Some
methodologists propose methods to overcome these issues,
such as only combining large enough studies, using other
forms of weighting, or correcting for publication and other
selective reporting biases (24–26). Familiarity with the data at
hand and the suitability of methods related to specific MAs is
crucial.

Step 3. Follow the Statistical Analysis Plan
Statistical analysis plans are designed during SR protocol
preparation; we describe such plans in Step 6 of our
previously published guideline (4). In addition to detailed
descriptions of planned analyses, SR protocols provide
descriptions of research questions, study designs, inclusion and
exclusion criteria, electronic databases, and preliminary search
strategies. We previously discussed review protocol preparation
in detail (4). Further detailed instructions on how to prepare a
statistical analysis plan can be found in Supplementary
Material S3.

Step 4. Prepare Datasets for Meta-Analysis
Prior to MA, examine the results extracted from each study with
either a dichotomous or continuous outcome (Supplementary
Material S4).

If studies use different units when reporting findings, convert
units for consistency before combining. Decide units (SI or
conventional units) and scales (meter, centimeter, millimeter)
before mathematically combining study estimates. Resolve
differences in reporting summary statistics, such as measures
of central tendency (mean or median) and spread (range or
standard deviation). Convert studies reporting median and
interquartile range (or range) to mean and standard deviation
through a priori-defined methods, such as those described by
Hozo or Wan (27, 28). Although studies not reporting summary
statistics or central tendency and spread are excluded from meta-
analyses, keep track of them and discuss unusable evidence and
inference effects. Determine if outcomes are normally distributed.
Transform values from studies reporting non-normal
distributions for combination, such as log transformation.

Data reflecting risk at multiple levels of exposure, such as
quantiles, present special challenges. By only extracting estimates
of risk in upper versus lower levels of exposure, such as nutrient
levels in nutritional associations, valuable information is lost. We
suggest an interval collapsing method (29) that allows using
information from all levels of exposure. Consider issues of
dose-response relationships and non-linearity. Prespecify the
plans for extracting and synthesizing relevant data. We advise
reading and discussing articles about common MA methods on
trends and dose-response (30–32). If studies use different cut-
points to define exposure categories for continuous exposures,
carefully record and consider them in the analysis (33).

Since most SR involves fewer than 100 studies, use simple
spreadsheet applications to encode study details and association
estimates. Use dedicated database management software, such as
RedCap (free) or Microsoft Access (commercial). Recently
popularized machine-learning-based software, such as
Covidence (with limited validity), helps extract data, screen
abstracts, and assess the quality and allows data transfer to
RevMan (Cochrane Collaboration). RevMan is a
multifunctional MA software performing qualitative and
quantitative analyses and may be suitable for beginners.
However, many MA methods are unavailable in RevMan,
which limits analysis options. R (free) and Stata (commercial)
are other softwares one may consider for data analysis
(Supplementary Table S4), We also recommend mapping
adjusted variables from in each study and the analyses done
(main analyses and subgroup or restricted analyses). It allows a
bird’s eye view of what adjustments were made, how consistent or
different adjustments considered for inclusion in the MA were
across different studies, and whether different unadjusted and
adjusted estimates were provided in specific studies. Adjusted and
unadjusted or crude association estimates across studies are often
available, and differences should be accounted and explained.
When preparing data analysis plans, common dilemmas include
choosing among several models and the provided variably
adjusted estimates. When undertaking a synthesis or review
for a particular research question using causal structures, such
as through DAGs, identify confounders ideally included in
studies’ adjusted models in the selection criterion. When
selecting estimates for MA, limit analysis to studies adjusting
for confounders defined important a priori. Alternatively,
combine different covariate-conditional estimates, such as
conducting minimally adjusted and maximally adjusted
analyses and comparing summary results. When combining
estimates from studies with estimated different covariate-
conditional effects, we advise caution regarding the non-
collapsibility of odds and hazard ratios, where covariate-
conditional odds ratios may differ from crude odds ratios even
in the absence of confounding; however, estimates of risk ratios
do not exhibit this problem (34). Ultimately, compare sensitivity
analysis results between meta-analyses of adjusted and
unadjusted data to indicate the presence of biases.

Step 5. Run the Meta-Analysis
Meta-Analysis for Dichotomous Outcome
The most common measures of associations for dichotomous
outcomes are proportions and prevalences, risk ratios, odds
ratios, relative risks, hazard ratios, or risk differences.
Mathematically transform and approximately normally
distribute each of these association measures into new
measures on a continuous scale. Meta-analyze transformed
measures using standard tools for continuous effect sizes
where derived summary effects may be finally back-
transformed into its original scale. We provide an overview of
study designs and common transformations in Supplementary
Tables S5–S7.

Originally developed as a technique for examining odds ratios
with stratification in mind, the Mantel-Haenszel method was not
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originally developed for MA. The Mantel-Haenszel approach
bypasses the need to first transform risk estimates, performs
an inverse-variance weighted MA, and then back transforms
summary estimators. With a weighted average of the effect
sizes result, applying it directly to study risk ratios, odds
ratios, or risk differences is advised. It provides robust
estimates when data are sparse and produces estimates similar
to the inverse variance method in other situations. Therefore, the
method can be widely used. Peto’s approach is an alternative to
the Mantel-Haenszel method for combining odds ratios. Peto’s
summary odds ratio can be biased, especially when there are large
differences in sample sizes between treatment arms; however, it
generally works well in other situations. Although the Mantel-
Haenszel and Peto methods pertain to raw counts with no
applicability in most meta-analyses of observational data
where adjusted estimates are considered, they may apply to
types of observational data where raw counts are involved,
such as adverse events.

When outcomes in comparison groups are either 100% or
zero, computational difficulties arise in one (single-zero studies)
or both (double-zero studies) comparison groups. Some studies
purposely remove double-zero studies from their analyses.
However, such approaches are problematic when meta-
analyzing rare events, such as surgical complications and
adverse medication effects. In these instances, a corrective
count—typically 0.5—is added to the group with an otherwise
zero count. The metan package in Stata and the
metabincommand from the meta library in R correct these
by default. Nyaga et al. (35) provide a guide for Stata. Such
arbitrary corrections possibly introduce bias or even reverse MA
results, especially when the number of samples in two groups is
unbalanced (10). We advise avoiding altogether or extreme
caution when using methods that ignore information from
double-zero studies or use continuity corrections. Beta-
binomial regression methods may be the best approach for
treating such studies when computing summary estimates for
relative risks, odds ratios, or risk differences (36).

Meta-Analysis for Continuous Outcomes
For continuous outcomes, investigate two exposure groups
(exposed vs. unexposed) or per unit increase in exposure in
terms of their mean outcome level. The association is
quantified as the mean difference—for example, the difference
between study groups in mean weight loss—or as beta-coefficient
from univariable or multivariable regression models. A MA can
then directly summarize mean differences for each study. If
different measurement scales, such as different instruments or
different formulas to derive outcomes, are available, we advise
using standardized mean differences as measures of association
estimates in MA—the mean difference divided by pooled
standard deviation. Use one of several ways to calculate
pooled standard deviation, such as the most popular methods
for standardized effect sizes: Cohen’s D, Hedge’s g, and Glass’
delta (37–39).

To measure standardized size effects, combine mean, standard
deviation, and sample size of exposed and non-exposed groups as
input with different weights. If using software, select the

standardization method. Hedge’s g includes a correction factor
for small sample bias; it is preferred over Cohen’s D for very small
sample sizes (fewer than 20) (39). Otherwise, the two methods
give very similar results. Expressing the standardized effect
measure demonstrates differences between exposed and non-
exposed groups by standard deviation. For example, if Hedge’s g
is 1, groups differ by 1 standard deviation and so on. When
standard errors are very different between study groups, Glass’s
delta—a measure using only the standard deviation of the
unexposed group—is usually used to measure effect size (38).
If mean differences or standardized mean differences are
combined, calculate with only the effect size and standard
deviation of individual groups. The software calculates the
differences and associated variance of differences for
weighting—the standardized mean differences with
appropriate variance estimation (Supplementary Tables S6,
S7, example Supplementary Figures S1, S2).

95% Confidence Intervals (CIs) and Prediction Intervals
Providing 95% CIs and prediction intervals is desirable when
performing a MA. CIs reflect sampling uncertainty and quantify
the precision of mean summary measures of association estimates;
prediction intervals reflect expected uncertainty in summary
estimates when including a new study in meta-analyses.
Prediction intervals—along with sampling uncertainty—reflect
inherent uncertainty about specific estimates and estimate the
interval of a new study if randomly selected from the same
population of studies already included in meta-analyses (40, 41).
Implement prediction intervals in random-effectsMA frameworks.
To calculate prediction intervals, 3 studies are required; however,
considering prediction intervals account for the variance of
summary estimates and heterogeneity, they can be imprecise for
MA of few studies.

Step 6. Explore Heterogeneity
Cochran’s Q homogeneity test and its related metric—the
Higgin’s & Thompson’s I2 index—are commonly used in most
statistical software (Stata, R, and RevMan). Under the hypothesis
of homogeneity among the effect sizes (42), the Q test follows a
Chi-square distribution (with k-1 degrees of freedom, where k is
number of studies). The Q test is used to evaluate the presence or
absence of statistically significant heterogeneity based on α
threshold of statistical significance (43). Calculated as [Q−df]/x
100, the I2 measures the proportion of the total variability in effect
size due to between-study heterogeneity rather than sampling
error. I2 is highly influenced by the size of the studies (within-
study variability), not just the size of between-study
heterogeneity. A higher percentage indicates higher
heterogeneity. H is the square root of the Chi-square
heterogeneity statistic divided by its degrees of freedom. It
describes relative differences between observed and expected Q
in the absence of heterogeneity. The H value of 1 indicates perfect
homogeneity. R is the ratio of the standard error of the underlying
mean from random-effects meta-analyses to standard errors of a
fixed-effects meta-analytic estimate. Similar to H, the R2 value of
1 indicates perfect homogeneity. Finally, τ2 is the estimate of
between-study variance under random-effects models. τ2 is an
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absolute measure of between-study heterogeneity; in contrast to
other measures (Q, I2, H, and R), it does not depend on study
precision (44). Further information about heterogeneity can be
found here (45).

Classification of Heterogeneity
Assessing heterogeneity in SRs is crucial in the synthesis of
observational studies. Recall that the reliability of heterogeneity
tests hinges on the number of studies. Thus, fewer studies make I2

estimates unreliable. To classify heterogeneity, different
categorizations are used across different meta-analyses. The
Cochrane Collaboration recommends classifying 0%–40% as
likely unimportant heterogeneity; 30%–60% as likely moderate
heterogeneity; 50%–90% as likely substantial heterogeneity; and
75%–100% as likely considerable heterogeneity (18). Although
there is no rule of thumb for I2 cut-offs to classify studies as
low, medium, or high heterogeneity, categorize using a priori
protocol definitions. Provide CIs for I2 since estimates of
heterogeneity have large uncertainty (46) (See Supplementary
Figures S1, S2 for examples).

Subgroup or Restricted Analysis
Ideally, all studies compared in meta-analyses should be similar;
however, it is almost impossible for observational studies. When
performing subgroup analyses, look at factors explaining between-
study heterogeneity. Explore subgroups, including patient or
individual characteristics, study methods, and exposure or
outcome definitions. Define subgroup characteristics a priori.
Group studies according to study characteristics. We outline a
subgroup analysis essential guide in Supplementary Table S8
(Supplementary Figure S3 provides example).

Meta-Regression
Meta-regression applies basic regression concepts using study-
level association estimates (42, 47, 48). Examining the
association—typically linear, yet not in all cases—between the
outcome of interest and covariates determines the contribution of
covariates (study characteristics) in the heterogeneity of the
association estimates. In common regression analyses, patient-
level information is used when comparing outcomes and
exposures alongside various covariates. In meta-regression
(instead of patient-level information) use population-level
information, such as mean age, location, mean body mass
index, percentage of females, mean follow-up time, and risk of
bias, to explore association estimates. The common practice of
visualizing meta-regressions is with bubble plots (Supplementary
Figure S4) using the metareg package in Stata (49).

In meta-regression, variables under investigation are potential
effect modifiers. Beta-coefficient refers to incremental changes in
outcomes with increasing levels of the covariate. Positive
coefficients signify an increase in the outcome with increasing
levels of the covariate variable; negative coefficients mean a
decrease in the outcome.

It is important to understand that meta-regression explores
consistency of findings and does not make causal inferences on
associations. Meta-regression results are based on observational data
across different studies. Thus, it suffers from similar pitfalls in

causality and biases. A statistically significant association between
an outcome and covariate (beta coefficient) may have a confounding
variable that drives the association, albeit occasionally mitigated by
multivariate analysis. In addition, covariates, in some cases, can be
highly collinear. Since most SR involve fewer studies capable of
meta-regression, power is also an issue. The number of studies is one
major stumbling block when performing meta-regression. In
multivariable analysis, the number of studies becomes more
important since more studies are required. Based on
recommendations from the Cochrane Handbook for Systematic
Reviews of Diagnostic Test Accuracy, do not consider meta-
regression with fewer than 10 studies in a MA. For multivariable
regression, they advise at least 10 studies per covariate (50), which
means multivariable analysis requires at least 20 studies (47). Meta-
regression may also be subject to ecological fallacy. In meta-
regression, we use average study participant characteristics;
therefore, the association between average study participant
characteristics and measures of association estimate may not be
the same within and between analyzed studies. Common covariates
prone to ecological fallacy are age and sex. Using individual-level
data is the only way to avoid ecological fallacies (51). Use caution if
concluding causality from meta-regression and interpreting results
(52). False positive claims are common in meta-regression (50).

While the most commonly used meta-regression is the
random-effects meta-regression, other models, such as fixed-
effects meta-regression, control rate meta-regression, multivariate
meta-regression and Bayesian hierarchical modeling, can be
used. These methods will depend on the specifics of analysis,
such as the type of data, the number of studies, and the research
question. More information can be found elsewhere (53, 54).

Perform Leave-One-Out Analysis (Influence Analysis)
An MA may include studies providing extreme positive or negative
associations. Sometimes it is possible to identify such outliers visually
by expecting the forest plot, but often the situation is more complex
due to sampling variances across included studies (55). To explore
whether the outlier influences the summary effect estimate, one can
explore whether the exclusion of such study from the analysis leads
to considerable changes in the summary effect estimate. In case of
small number of studies, the exclusion may be done manually; yet
the most commonly used statistical software provide a possibility to
perform a leave-one-out analysis, which iteratively removes one
study at a time from the analysis and provides recomputed summary
association estimates (48). For instance, in STATA, use the
metaninf package (56) or in R, use the metafor package to
perform a leave-one-out analysis (example shown in
Supplementary Figure S5). For further reading, we suggest the
article on outlier and influence diagnostics for MA (55).

Step 7. Explore Publication Selection Bias
Selection bias related to the publication process—or publication
selection bias—arises when disseminating study results influences
the nature and direction of results (57). Publication selection biases
include: a) classic publication bias or file drawer bias when entire
studies remain unpublished; time-lag bias when rapid publication
depends on results; b) duplicate publication bias when some data
are publishedmore than once; c) location bias or citation bias when
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citations and study visibility depend on results; d) language bias
when study publication in different languages is differentially
driven by results; and e) outcome reporting bias when only
some outcomes and/or analyses are published preferentially.

A thorough literature search is the first step in preventing
publication bias (explained in our previous publication) (4). In
addition to bibliographic database search, rigorous search of the
gray literature and study registries (for preliminary data or for
unpublished results) should be done to identify other studies of
interest. We summarized the most important databases in
Supplementary Table S9. In addition, one should consider
whether highly specialized or very large numbers of studies
without any special planning (e.g., when exposures and
outcomes are commonly and routinely measured in datasets
such as ubiquitous electronic health records) readily address
the question of interest. Selective reporting bias is very easy to
be introduced in the latter situation.

Several methods exist for exploring publication selection bias;
however, no method definitively proves or disproves publication
selection bias. We comment on several widely popular, yet often
over-interpreted methods in the next two subsections and in
Supplementary Table S10 and we urge caution against their
misuse and misinterpretation. Based on statistical properties
(sensitivity and specificity for detecting publication selection
bias), newer tests, such as those based on evaluating excess
statistical significance (26), may perform better. When less
biased summary estimates of effects are desired, the Weighted
Average of Adequately Powered Studies (WAAP) (24) (that
focuses on studies with >80% power) may have the best
performance. However, many MA has few studies and not
well-powered studies at all; then any test for publication
selection bias and attempt to adjust for such bias may be in
vain. Even greater caution is needed in such circumstances.

Visual Inspection of Study Results
To help understandwhether effect sizes differ systematically between
small and large studies, funnel plots provide the simplest technique
and a graphical representation (Supplementary Figure S5). Funnel
plot graphs demonstrate association sizes or estimates on the
horizontal axis (x-axis) and the study precision, sample size, or
the inverse of the standard error on the vertical axis (y-axis)—an
inverted funnel. Ideally, symmetry around the estimates provided by
larger studies (the tip of the inverted funnel) extends to the smaller
studies (the foot of the inverted funnel). An asymmetrical funnel
shape with larger estimates for smaller rather than larger studies
hints at publication selection bias, yet other possible reasons exist for
the same pattern. Draw cautious inferences (58, 59). Since plain
visual assessment is subjective, we do not recommend using it as the
sole criterion to arbitrate publication bias.

In some observational studies, observed differences between
large and small studies arise from methodological differences.
Different study characteristics in study sizes can lead to
heterogeneity in the analysis. For example, smaller studies can
have more stringent disease criteria for inclusion (lower risk for
misclassification bias) and more intricate methods for data
collection (lower risk for recall bias) compared with larger
studies. More commonly, smaller studies are subject to more

selective analysis and reporting pressure with possibly more bias
than well-designed large studies. There is no way to generalize a
priori for all topics, and studies should be examined carefully in each
case. Thus, in the context of observational studies, it holds even
more than funnel plot asymmetry should not automatically indicate
publication bias (9, 10). In particular, any factor associated with
both study effect and study size could confound the true association
and cause an asymmetrical funnel. Contour-enhanced funnel plots
may help interpret funnels and differentiate funnel plot asymmetry
caused by statistical significance-related publication bias from other
factors; however, most of these caveats still apply (60).

Statistical Tests to Explore Publication Selection Bias
Several tests and statistical methods are developed to detect (and
potentially correct) publication selection bias. Egger’s test remains
the most popular. It is based on linear regression of normalized
association or effect estimates (using association estimates divided by
standard errors) and study precision (inverse of the standard error)
(61, 62). The intercept of regression lines measures the
asymmetry—the larger its deviation from zero, the bigger the
funnel plot asymmetry. A p-value <0.05 indicates the presence of
publication bias, which means estimates of smaller studies do not
mimic estimates of larger studies. Egger’s test may be unreliable for
fewer than 10 studies.We advise cautionwhen interpreting estimates
of fewer than 10 studies. Further, for log odds ratios, even in the
absence of selective outcome reporting, the test inflates Type I errors
(false positive findings) (58, 63). When all studies have similar
variances, test results have no meaning. Egger’s test (and other
modifications) as small study effect tests (i.e., whether small and
larger studies give different results) should be used rather than
strictly as a test of publication selection bias (See Supplementary
Figures S6, S7 for example).

Other methods have been developed to address the limitations
of existing popular approaches, such as the three-parameter
selection model (64), the proportion of statistical significance
test (26), and variants thereof. The three-parameter selection
model’s main assumption is the likelihood of publication is an
increasing step function of the complement of a study’s p-value.
Maximum likelihood methods estimate corrected effect sizes and
the relative probability that insignificant results are published.
Whereas the proportion of statistical significance test compares
expected with observed proportions of statistically significant
findings. Find detailed explanation elsewhere (26). Some
methodologists propose the most reliable summary results are
obtained by methods accommodating possibilities of publication
selection bias. With proven, good statistical properties, some of
these methods may be used more in the future (26). However, for
typical meta-analyses with limited available data, mostly small
studies, and no formal pre-registration, no methods are likely
perfect. Even when not formally demonstrated, consider
publication selection bias as a definite possibility.

DISCUSSION

Synthesizing data from high-quality observational studies, at low
risk of bias, complements data from RCTs and may provide
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insight into prevalence, the generalizability of findings for
different populations, and information on long-term effects
and desirable or adverse events (harms) when dealing with
interventions. SRs and MA help quantify associations not
testable in RCTs, such as quantifying the association between
age at menopause onset or obesity with health outcomes. For
observational evidence which assess interventions, we
recommend applying the grading of recommendations,
assessment, development, and evaluation (GRADE) tool to
translate results from SRs and MA into evidence-based
recommendations for research and clinical and public health
impact (65). Applying GRADE addresses a range of research
questions related to diagnosing, screening, preventing, treating,
and public health. A panel of experts formulates
recommendations, ideally experienced information specialists
and subject matter experts. For observational evidence
pertaining to putative protective and risk factors, use a
series of criteria focused on the amount of evidence,
statistical support, the extent of heterogeneity, and hints of
bias (66). Eventually, systematic reviews and meta-analyses
are observational studies themselves. Therefore, always
cautiously interpret and take special care when claiming
causality and framing strong recommendations for policy
and clinical decision-making.
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