26 research outputs found

    G-Quadruplexes in RNA Biology: Recent Advances and Future Directions.

    Get PDF
    RNA G-quadruplexes (RG4s) are four-stranded structures known to control gene expression mechanisms, from transcription to protein synthesis, and DNA-related processes. Their potential impact on RNA biology allows these structures to shape cellular processes relevant to disease development, making their targeting for therapeutic purposes an attractive option. We review here the current knowledge on RG4s, focusing on the latest breakthroughs supporting the notion of transient structures that fluctuate dynamically in cellulo, their interplay with RNA modifications, their role in cell compartmentalization, and their deregulation impacting the host immune response. We emphasize RG4-binding proteins as determinants of their transient conformation and effectors of their biological functions

    A physical and functional link between splicing factors promotes pre-mRNA 3′ end processing

    Get PDF
    Polypyrimidine tract-binding protein (PTB) is a splicing regulator that also plays a positive role in pre-mRNA 3′ end processing when bound upstream of the polyadenylation signal (pA signal). Here, we address the mechanism of PTB stimulatory function in mRNA 3′ end formation. We identify PTB as the protein factor whose binding to the human β-globin (HBB) 3′ UTR is abrogated by a 3′ end processing-inactivating mutation. We show that PTB promotes both in vitro 3′ end cleavage and polyadenylation and recruits directly the splicing factor hnRNP H to G-rich sequences associated with several pA signals. Increased binding of hnRNP H results in stimulation of polyadenylation through a direct interaction with poly(A) polymerase. Therefore, our results provide evidence of a concerted regulation of pA signal recognition by splicing factors bound to auxiliary polyadenylation sequence elements

    Molecular mechanisms of eukaryotic pre-mRNA 3′ end processing regulation

    Get PDF
    Messenger RNA (mRNA) 3′ end formation is a nuclear process through which all eukaryotic primary transcripts are endonucleolytically cleaved and most of them acquire a poly(A) tail. This process, which consists in the recognition of defined poly(A) signals of the pre-mRNAs by a large cleavage/polyadenylation machinery, plays a critical role in gene expression. Indeed, the poly(A) tail of a mature mRNA is essential for its functions, including stability, translocation to the cytoplasm and translation. In addition, this process serves as a bridge in the network connecting the different transcription, capping, splicing and export machineries. It also participates in the quantitative and qualitative regulation of gene expression in a variety of biological processes through the selection of single or alternative poly(A) signals in transcription units. A large number of protein factors associates with this machinery to regulate the efficiency and specificity of this process and to mediate its interaction with other nuclear events. Here, we review the eukaryotic 3′ end processing machineries as well as the comprehensive set of regulatory factors and discuss the different molecular mechanisms of 3′ end processing regulation by proposing several overlapping models of regulation

    Essential role for the interaction between hnRNP H/F and a G quadruplex in maintaining p53 pre-mRNA 3′-end processing and function during DNA damage

    No full text
    Following DNA damage, mRNA 3′-end formation is inhibited, contributing to repression of mRNA synthesis. Here we investigated how DNA-damaged cells accomplish p53 mRNA 3′-end formation when normal mechanisms of pre-mRNA 3′-end processing regulation are inhibited. The underlying mechanism involves the interaction between a G-quadruplex structure located downstream from the p53 cleavage site and hnRNP H/F. Importantly, this interaction is critical for p53 expression and contributes to p53-mediated apoptosis. Our results uncover the existence of a specific rescue mechanism of 3′-end processing regulation allowing stress-induced p53 accumulation and function in apoptosis

    A novel function for the U2AF 65 splicing factor in promoting pre-mRNA 3 '-end processing

    No full text
    Splicing and 3′-end processing (including cleavage and polyadenylation) of vertebrate pre-mRNAs are tightly coupled events that contribute to the extensive molecular network that coordinates gene expression. Sequences within the terminal intron of genes are essential to stimulate pre-mRNA 3′-end processing, although the factors mediating this effect are unknown. Here, we show that the pyrimidine tract of the last splice acceptor site of the human β-globin gene is necessary to stimulate mRNA 3′-end formation in vivo and binds the U2AF 65 splicing factor. Naturally occurring β-thalassaemia-causing mutations within the pyrimidine tract reduces both U2AF 65 binding and 3′-end cleavage efficiency. Significantly, a fusion protein containing U2AF 65, when tethered upstream of a cleavage/polyadenylation site, increases 3′-end cleavage efficiency in vitro and in vivo. Therefore, we propose that U2AF 65 promotes 3′-end processing, which contributes to 3′-terminal exon definition

    Translational Regulation by hnRNP H/F Is Essential for the Proliferation and Survival of Glioblastoma

    No full text
    Deregulation of mRNA translation is a widespread characteristic of glioblastoma (GBM), aggressive malignant brain tumors that are resistant to conventional therapies. RNA-binding proteins (RBPs) play a critical role in translational regulation, yet the mechanisms and impact of these regulations on cancer development, progression and response to therapy remain to be fully understood. Here, we showed that hnRNP H/F RBPs are potent regulators of translation through several mechanisms that converge to modulate the expression and/or the activity of translation initiation factors. Among these, hnRNP H/F regulate the phosphorylation of eIF4E and its translational targets by controlling RNA splicing of the A-Raf kinase mRNA, which in turn modulates the MEK-ERK/MAPK signaling pathway. The underlying mechanism involves RNA G-quadruplex (RG4s), RNA structures whose modulation phenocopies hnRNP H/F translation regulation in GBM cells. Our results highlighted that hnRNP H/F are essential for key functional pathways regulating proliferation and survival of GBM, highlighting its targeting as a promising strategy for improving therapeutic outcomes
    corecore