13 research outputs found

    Marrow transplants from unrelated donors for patients with aplastic anemia: Minimum effective dose of total body irradiation

    Get PDF
    AbstractPatients with aplastic anemia who do not have suitably HLA-matched, related donors generally receive immunosuppressive treatment as first-line therapy and are considered for transplantation from an unrelated donor only if they fail to respond to immunosuppressive treatment. In this setting, rates of transplantation-related morbidity and mortality have been high. We conducted a prospective study to determine the minimal dose of total body irradiation (TBI) sufficient to achieve sustained engraftment when it is used in combination with 3 cycles of 30 mg/kg of antithymocyte globulin (ATG) and 4 cycles of 50 mg/kg of cyclophosphamide (CY). We also wanted to determine the tolerability and toxicity of the regimen. The starting dosage of TBI was 3 x 200 cGy given over 2 days following CY/ATG. The TBI dose was to be escalated in increments of 200 cGy if graft failure occurred in the absence of prohibitive toxicity, and de-escalated for toxicity in the absence of graft failure. Twenty-one female and 29 male patients aged 1.3 to 46.5 years (median age, 14.4 years) underwent transplantation at 14 medical centers. The time interval from diagnosis to transplantation was 2.8 to 264 months (median, 14.5 months). All patients had been transfused multiple times and all had received 1 to 11 courses (median, 4 courses) of immunosuppressive treatment and other modalities of treatment. In 38 cases, the donors were HLA-A, -B and -DR phenotypically matched with the patients, and, in 12 cases, the donor phenotype differed from that of the recipient by 1 HLA antigen. Recipients of mismatched transplants were considered separately for TBI dose modification, and this study is still ongoing. Seven patients did not tolerate ATG and were prepared with 6 x 200 cGy of TBI plus 120 mg/kg of CY. Of the HLA-matched recipients prepared with CY/ATG/TBI, all 20 who received 3 x 200 or 2 x 200 cGy of TBI achieved engraftment, and 10 are alive. Of the 13 patients who received 1 x 200 cGy of TBI, 1 failed to engraft, and 8 are alive. Each of 10 patients who received an HLA-nonidentical transplant achieved engraftment, and 3 of 6 who were given 3 x 200 cGy of TBI, and 4 of 4 who were given 2 x 200 cGy are alive. Pulmonary toxicity occurred in 8 of 30 patients who were given 3 x 200 or 2 x 200 cGy of TBI concurrently with ATG and CY at 200 mg/kg, and in 2 of 13 patients who received 1 x 200 cGy of TBI, a pattern that suggests a decrease in toxicity with TBI dose de-escalation. Overall, the highest probability of survival (73%) was observed among patients who underwent transplantation within 1 year of diagnosis, compared with patients who underwent transplantation after a longer period of disease. In addition, younger patients (aged < or = 20 years) were more likely to survive than older patients (aged > 20 years). Thus, for patients with an HLA-matched, unrelated donor, a TBI dose of 200 cGy (in combination with CY/ATG) was sufficient to allow for engraftment without inducing prohibitive toxicity. As in previous studies, patient age and pretransplantation disease duration remain important prognostic factors.Biol Blood Marrow Transplant 2001;7(4):208-15

    MondoA drives malignancy in B-ALL through enhanced adaptation to metabolic stress.

    Get PDF
    peer reviewedCancer cells are in most instances characterized by rapid proliferation and uncontrolled cell division. Hence, they must adapt to proliferation-induced metabolic stress through intrinsic or acquired antimetabolic stress responses to maintain homeostasis and survival. One mechanism to achieve this is reprogramming gene expression in a metabolism-dependent manner. MondoA (also known as Myc-associated factor X-like protein X-interacting protein [MLXIP]), a member of the MYC interactome, has been described as an example of such a metabolic sensor. However, the role of MondoA in malignancy is not fully understood and the underlying mechanism in metabolic responses remains elusive. By assessing patient data sets, we found that MondoA overexpression is associated with worse survival in pediatric common acute lymphoblastic leukemia (ALL; B-precursor ALL [B-ALL]). Using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) and RNA-interference approaches, we observed that MondoA depletion reduces the transformational capacity of B-ALL cells in vitro and dramatically inhibits malignant potential in an in vivo mouse model. Interestingly, reduced expression of MondoA in patient data sets correlated with enrichment in metabolic pathways. The loss of MondoA correlated with increased tricarboxylic acid cycle activity. Mechanistically, MondoA senses metabolic stress in B-ALL cells by restricting oxidative phosphorylation through reduced pyruvate dehydrogenase activity. Glutamine starvation conditions greatly enhance this effect and highlight the inability to mitigate metabolic stress upon loss of MondoA in B-ALL. Our findings give novel insight into the function of MondoA in pediatric B-ALL and support the notion that MondoA inhibition in this entity offers a therapeutic opportunity and should be further explored

    Sarcoma treatment in the era of molecular medicine

    Get PDF
    Sarcomas are heterogeneous and clinically challenging soft tissue and bone cancers. Although constituting only 1% of all human malignancies, sarcomas represent the second most common type of solid tumors in children and adolescents and comprise an important group of secondary malignancies. More than 100 histological subtypes have been characterized to date, and many more are being discovered due to molecular profiling. Owing to their mostly aggressive biological behavior, relative rarity, and occurrence at virtually every anatomical site, many sarcoma subtypes are in particular difficult-to-treat categories. Current multimodal treatment concepts combine surgery, polychemotherapy (with/without local hyperthermia), irradiation, immunotherapy, and/or targeted therapeutics. Recent scientific advancements have enabled a more precise molecular characterization of sarcoma subtypes and revealed novel therapeutic targets and prognostic/predictive biomarkers. This review aims at providing a comprehensive overview of the latest advances in the molecular biology of sarcomas and their effects on clinical oncology; it is meant for a broad readership ranging from novices to experts in the field of sarcoma.Peer reviewe

    Understanding tumor heterogeneity as functional compartments - superorganisms revisited

    Get PDF
    Compelling evidence broadens our understanding of tumors as highly heterogeneous populations derived from one common progenitor. In this review we portray various stages of tumorigenesis, tumor progression, self-seeding and metastasis in analogy to the superorganisms of insect societies to exemplify the highly complex architecture of a neoplasm as a system of functional "castes.

    Current State of Immunotherapy and Mechanisms of Immune Evasion in Ewing Sarcoma and Osteosarcoma

    No full text
    We argue here that in many ways, Ewing sarcoma (EwS) is a unique tumor entity and yet, it shares many commonalities with other immunologically cold solid malignancies. From the historical perspective, EwS, osteosarcoma (OS) and other bone and soft-tissue sarcomas were the first types of tumors treated with the immunotherapy approach: more than 100 years ago American surgeon William B. Coley injected his patients with a mixture of heat-inactivated bacteria, achieving survival rates apparently higher than with surgery alone. In contrast to OS which exhibits recurrent somatic copy-number alterations, EwS possesses one of the lowest mutation rates among cancers, being driven by a single oncogenic fusion protein, most frequently EWS-FLI1. In spite these differences, both EwS and OS are allied with immune tolerance and low immunogenicity. We discuss here the potential mechanisms of immune escape in these tumors, including low representation of tumor-specific antigens, low expression levels of MHC-I antigen-presenting molecules, accumulation of immunosuppressive M2 macrophages and myeloid proinflammatory cells, and release of extracellular vesicles (EVs) which are capable of reprogramming host cells in the tumor microenvironment and systemic circulation. We also discuss the vulnerabilities of EwS and OS and potential novel strategies for their targeting

    Donor lymphocyte infusions in adolescents and young adults for control of advanced pediatric sarcoma

    No full text
    Allogeneic stem cell transplantation (allo-SCT) and donor lymphocyte infusions (DLI) may induce a graft-versus-tumor effect in pediatric sarcoma patients. Here, we describe general feasibility, toxicity and efficacy of DLI after allo-SCT

    MHC Class I-Restricted TCR-Transgenic CD4+ T Cells Against STEAP1 Mediate Local Tumor Control of Ewing Sarcoma In Vivo

    No full text
    In this study we report the functional comparison of T cell receptor (TCR)-engineered major histocompatibility complex (MHC) class I-restricted CD4+ versus CD8+ T cells targeting a peptide from six transmembrane epithelial antigen of the prostate 1 (STEAP1) in the context of HLA-A*02:01. STEAP1 is a tumor-associated antigen, which is overexpressed in many cancers, including Ewing sarcoma (EwS). Based on previous observations, we postulated strong antitumor potential of tumor-redirected CD4+ T cells transduced with an HLA class I-restricted TCR against a STEAP1-derived peptide. We compared CD4+ T cell populations to their CD8+ counterparts in vitro using impedance-based xCELLigence and cytokine/granzyme release assays. We further compared antitumor activity of STEAP130-TCR transgenic (tg) CD4+ versus CD8+ T cells in tumor-bearing xenografted Rag2&minus;/&minus;&gamma;c&minus;/&minus; mice. TCR tgCD4+ T cells showed increased cytotoxic features over time with similar functional avidity compared to tgCD8+ cells after 5&ndash;6 weeks of culture. In vivo, local tumor control was equal. Assessing metastatic organotropism of intraveniously (i.v.) injected tumors, only tgCD8+ cells were associated with reduced metastases. In this analysis, EwS-redirected tgCD4+ T cells contribute to local tumor control, but fail to control metastatic outgrowth in a model of xenografted EwS
    corecore