34 research outputs found

    The relationship between local scalp skin temperature and cutaneous perfusion during scalp cooling

    Get PDF
    Cooling the scalp during administration of chemotherapy can prevent hair loss. It reduces both skin blood flow and hair follicle temperature, thus affecting drug supply and drug effect in the hair follicle. The extent to which these mechanisms contribute to the hair preservative effect of scalp cooling remains unknown. The purpose of this study was to establish a relationship between local scalp skin temperature and cutaneous blood flow during scalp cooling. We measured skin temperature and cutaneous perfusion during a cooling and re-warming experiment. Experiments on a single subject showed that the measurements were reproducible and that the response was identical for the two positions that were measured. Inter-subject variability was investigated on nine subjects. We found that for the first 10 °C of cooling, perfusion of the scalp skin decreases to below 40%. Perfusion can be further reduced to below 30% by a few degrees more cooling, but a plateau is reached after that. We found that a generally accepted relation in thermal physiology between temperature and perfusion (i.e. Q10 relation) does not describe the data well, but we found an alternative relation that describes the average behavior significantly better

    Effects of temperature and doxorubicin exposure on keratinocyte damage in vitro

    Get PDF
    Cancer chemotherapy treatment often leads to hair loss, which may be prevented by cooling the scalp during drug administration. The current hypothesis for the hair preservative effect of scalp cooling is that cooling of the scalp skin reduces blood flow (perfusion) and chemical reaction rates. Reduced perfusion leads to less drugs available for uptake, whereas the reduced temperature decreases uptake of and damage by chemotherapy. Altogether, less damage is exerted to the hair cells, and the hair is preserved. However, the two mechanisms in the hypothesis have not been quantified yet. To quantify the effect of reduced drug damage caused by falling temperatures, we investigated the effect of local drug concentration and local tissue temperature on hair cell damage using in vitro experiments on keratinocytes. Cells were exposed for 4 h to a wide range of doxorubicin concentrations. During exposure, cells were kept at different temperatures. Cell viability was determined after 3 d using a viability test. Control samples were used to establish a concentration–viability curve. Results show that cell survival is significantly higher in cooled cells (T < 22° C) than in non-cooled cells (T = 37° C), but no significant differences are visible between T = 10° C and T = 22° C. Based on this result and previous work, we can conclude that there is an optimal temperature in scalp cooling. Further cooling will only result in unnecessary discomfort for the patient and should therefore be avoided

    The ANTARES Optical Beacon System

    Get PDF
    ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It consists of a three dimensional array of photomultiplier tubes that can detect the Cherenkov light induced by charged particles produced in the interactions of neutrinos with the surrounding medium. High angular resolution can be achieved, in particular when a muon is produced, provided that the Cherenkov photons are detected with sufficient timing precision. Considerations of the intrinsic time uncertainties stemming from the transit time spread in the photomultiplier tubes and the mechanism of transmission of light in sea water lead to the conclusion that a relative time accuracy of the order of 0.5 ns is desirable. Accordingly, different time calibration systems have been developed for the ANTARES telescope. In this article, a system based on Optical Beacons, a set of external and well-controlled pulsed light sources located throughout the detector, is described. This calibration system takes into account the optical properties of sea water, which is used as the detection volume of the ANTARES telescope. The design, tests, construction and first results of the two types of beacons, LED and laser-based, are presented.Comment: 21 pages, 18 figures, submitted to Nucl. Instr. and Meth. Phys. Res.

    Performance of the First ANTARES Detector Line

    Get PDF
    In this paper we report on the data recorded with the first Antares detector line. The line was deployed on the 14th of February 2006 and was connected to the readout two weeks later. Environmental data for one and a half years of running are shown. Measurements of atmospheric muons from data taken from selected runs during the first six months of operation are presented. Performance figures in terms of time residuals and angular resolution are given. Finally the angular distribution of atmospheric muons is presented and from this the depth profile of the muon intensity is derived.Comment: 14 pages, 9 figure

    First results of the Instrumentation Line for the deep-sea ANTARES neutrino telescope

    Get PDF
    In 2005, the ANTARES Collaboration deployed and operated at a depth of 2500 m a so-called Mini Instrumentation Line equipped with Optical Modules (MILOM) at the ANTARES site. The various data acquired during the continuous operation from April to December 2005 of the MILOM confirm the satisfactory performance of the Optical Modules, their front-end electronics and readout system. as well as the calibration devices of the detector. The in situ measurement of the Optical Module time response yields a resolution better than 0.5 ns. The performance of the acoustic positioning system, which enables the spatial reconstruction of the ANTARES detector with a precision of about 10 cm, is verified. These results demonstrate that with the full ANTARES neutrino telescope the design angular resolution of better than 0.3 degrees can be realistically achieved

    The data acquisition system for the ANTARES neutrino telescope

    Get PDF
    The ANTARES neutrino telescope is being constructed in the Mediterranean Sea. It consists of a large three-dimensional array of photo-multiplier tubes. The data acquisition system of the detector takes care of the digitisation of the photo-multiplier tube signals, data transport, data filtering, and data storage. The detector is operated using a control program interfaced with all elements. The design and the implementation of the data acquisition system are described.Comment: 20 pages, 6 figures, accepted for publication in Nucl. Instrum. Meth.
    corecore