186 research outputs found

    In vivo activity of the dual SYK/FLT3 inhibitor TAK-659 against pediatric acute lymphoblastic leukemia xenografts

    Full text link
    Background: While children with acute lymphoblastic leukemia (ALL) experience close to a 90% likelihood of cure, the outcome for certain high-risk pediatric ALL subtypes remains dismal. Spleen tyrosine kinase (SYK) is a prominent cytosolic nonreceptor tyrosine kinase in pediatric B-lineage ALL (B-ALL). Activating mutations or overexpression of Fms-related receptor tyrosine kinase 3 (FLT3) are associated with poor outcome in hematological malignancies. TAK-659 (mivavotinib) is a dual SYK/FLT3 reversible inhibitor, which has been clinically evaluated in several other hematological malignancies. Here, we investigate the in vivo efficacy of TAK-659 against pediatric ALL patient-derived xenografts (PDXs). Methods: SYK and FLT3 mRNA expression was quantified by RNA-seq. PDX engraftment and drug responses in NSG mice were evaluated by enumerating the proportion of human CD45+ cells (%huCD45+) in the peripheral blood. TAK-659 was administered per oral at 60 mg/kg daily for 21 days. Events were defined as %huCD45+ ≥ 25%. In addition, mice were humanely killed to assess leukemia infiltration in the spleen and bone marrow (BM). Drug efficacy was assessed by event-free survival and stringent objective response measures. Results: FLT3 and SYK mRNA expression was significantly higher in B-lineage compared with T-lineage PDXs. TAK-659 was well tolerated and significantly prolonged the time to event in six out of eight PDXs tested. However, only one PDX achieved an objective response. The minimum mean %huCD45+ was significantly reduced in five out of eight PDXs in TAK-659-treated mice compared with vehicle controls. Conclusions: TAK-659 exhibited low to moderate single-agent in vivo activity against pediatric ALL PDXs representative of diverse subtypes

    Scents of Adolescence: The Maturation of the Olfactory Phenotype in a Free-Ranging Mammal

    Get PDF
    Olfaction is an important sensory modality for mate recognition in many mammal species. Odorants provide information about the health status, genotype, dominance status and/or reproductive status. How and when odor profiles change during sexual maturation is, however often unclear, particularly in free-ranging mammals. Here, we investigated whether the wing sac odorant of male greater sac-winged bats (Saccopteryx bilineata, Emballonuridae) differs between young and adults, and thus offers information about sexual maturity to potential mating partners. Using gas chromatography – mass spectrometry, we found differences in the odorants of young and adult males prior and during, but not after the mating period. The wing sac odorant of adult males consists of several substances, such as Pyrocoll, 2,6,10-trimethyl-3-oxo-6,10-dodecadienolide, and a so far unidentified substance; all being absent in the odor profiles of juveniles prior to the mating season. During the mating season, these substances are present in most of the juvenile odorants, but still at lower quantities compared to the wing sac odorants of adults. These results suggest that the wing sac odorant of males encodes information about age and/or sexual maturity. Although female S. bilineata start to reproduce at the age of half a year, most males of the same age postpone the sexual maturation of their olfactory phenotype until after the first mating season

    The impact of low erythrocyte density in human blood on the fitness and energetic reserves of the African malaria vector Anopheles gambiae

    Get PDF
    Background Anaemia is a common health problem in the developing world. This condition is characterized by a reduction in erythrocyte density, primarily from malnutrition and/or infectious diseases such as malaria. As red blood cells are the primary source of protein for haematophagous mosquitoes, any reduction could impede the ability of mosquito vectors to transmit malaria by influencing their fitness or that of the parasites they transmit. The aim of this study was to determine the impact of differences in the density of red blood cells in human blood on malaria vector (Anopheles gambiae sensu stricto) fitness. The hypotheses tested are that mosquito vector energetic reserves and fitness are negatively influenced by reductions in the red cell density of host human blood meals commensurate with those expected from severe anaemia. Methods Mosquitoes (An. gambiae s.s.) were offered blood meals of different packed cell volume(PCV) of human blood consistent with those arising from severe anaemia (15%) and normalPCV (50%). Associations between mosquito energetic reserves (lipid, glucose and glycogen)and fitness measures (reproduction and survival) and blood meal PCV were investigated. Results The amount of protein that malaria vectors acquired from blood feeding (indexed by haematin excretion) was significantly reduced at low blood PCV. However, mosquitoes feeding on blood of low PCV had the same oviposition rates as those feeding on blood of normal PCV, and showed an increase in egg production of around 15%. The long-term survival of An. gambiae s.s was reduced after feeding on low PCV blood, but PCV had no significant impact on the proportion of mosquitoes surviving through the minimal period required to develop and transmit malaria parasites (estimated as 14 days post-blood feeding). The impact of blood PCV on the energetic reserves of mosquitoes was relatively minor. Conclusions These results suggest that feeding on human hosts whose PCV has been depleted due to severe anaemia does not significantly reduce the fitness or transmission potential of malaria vectors, and indicates that mosquitoes may be able exploit resources for reproduction more efficiently from blood of low rather than normal PCV

    Middleborns disadvantaged? testing birth-order effects on fitness in pre-industrial finns

    Get PDF
    Parental investment is a limited resource for which offspring compete in order to increase their own survival and reproductive success. However, parents might be selected to influence the outcome of sibling competition through differential investment. While evidence for this is widespread in egg-laying species, whether or not this may also be the case in viviparous species is more difficult to determine. We use pre-industrial Finns as our model system and an equal investment model as our null hypothesis, which predicts that (all else being equal) middleborns should be disadvantaged through competition. We found no overall evidence to suggest that middleborns in a family are disadvantaged in terms of their survival, age at first reproduction or lifetime reproductive success. However, when considering birth-order only among same-sexed siblings, first-, middle-and lastborn sons significantly differed in the number of offspring they were able to rear to adulthood, although there was no similar effect among females. Middleborn sons appeared to produce significantly less offspring than first-or lastborn sons, but they did not significantly differ from lastborn sons in the number of offspring reared to adulthood. Our results thus show that taking sex differences into account is important when modelling birth-order effects. We found clear evidence of firstborn sons being advantaged over other sons in the family, and over firstborn daughters. Therefore, our results suggest that parents invest differentially in their offspring in order to both preferentially favour particular offspring or reduce offspring inequalities arising from sibling competition

    Genetic analysis of lung function in inbred mice suggests vitamin D receptor as a candidate gene

    Get PDF
    Vitamin D receptor (VDR) polymorphisms are associated with an increased asthma incidence in human populations; however, observations in Vdr knockout mice are unclear. The aim of our study was to determine the influence of the genetic variation in Vdr among inbred strains on lung resistance (i.e., dynamic and airway resistance). In an intercross between the strains C57BL/6J (B6) and KK/HlJ (KK), we identified that a significant QTL for dynamic resistance on Chr X was interacting with a QTL on Chr 15. The Chr 15 QTL peak was located in close proximity to the Vdr locus. We further examined if phenotypes of several inbred strains with varying Vdr genotypes differed. Strains with a B6-like genotype on the Vdr locus had significantly lower airway resistance than strains with a KK-like genotype. Vdr knockout mice were examined for dynamic resistance and showed significantly higher resistance than mice with one (i.e., heterozygous) or both copies (i.e., wild-type) of the Vdr. In comparison to B6, the strain A/J is more resistant but carries the same genotype at the Vdr locus. Dietary vitamin D manipulation in the strain A/J did not rescue the high airway resistance phenotype. Finally, we observed that serum vitamin D does not correlate significantly with lung resistance parameters in a survey of 18 strains. Conclusively, Vdr contributes to the phenotypic variation of lung resistance in inbred mice but other molecules in the Vdr pathway and extended network [i.e., Chr X gene(s)] may contribute as well

    Threat-sensitive anti-predator defence in precocial wader, the northern lapwing Vanellus vanellus

    Get PDF
    Birds exhibit various forms of anti-predator behaviours to avoid reproductive failure, with mobbing—observation, approach and usually harassment of a predator—being one of the most commonly observed. Here, we investigate patterns of temporal variation in the mobbing response exhibited by a precocial species, the northern lapwing (Vanellus vanellus). We test whether brood age and self-reliance, or the perceived risk posed by various predators, affect mobbing response of lapwings. We quantified aggressive interactions between lapwings and their natural avian predators and used generalized additive models to test how timing and predator species identity are related to the mobbing response of lapwings. Lapwings diversified mobbing response within the breeding season and depending on predator species. Raven Corvus corax, hooded crow Corvus cornix and harriers evoked the strongest response, while common buzzard Buteo buteo, white stork Ciconia ciconia, black-headed gull Chroicocephalus ridibundus and rook Corvus frugilegus were less frequently attacked. Lapwings increased their mobbing response against raven, common buzzard, white stork and rook throughout the breeding season, while defence against hooded crow, harriers and black-headed gull did not exhibit clear temporal patterns. Mobbing behaviour of lapwings apparently constitutes a flexible anti-predator strategy. The anti-predator response depends on predator species, which may suggest that lapwings distinguish between predator types and match mobbing response to the perceived hazard at different stages of the breeding cycle. We conclude that a single species may exhibit various patterns of temporal variation in anti-predator defence, which may correspond with various hypotheses derived from parental investment theory

    Parenting Science Gang : radical co-creation of research projects led by parents of young children

    Get PDF
    Background Parents are increasingly searching online for information supported by research but can find it difficult to identify results relevant to their own experiences. More troublingly, a number of studies indicate that parenting information found online often can be misleading or wrong. The goal of the Parenting Science Gang (PSG) project was to use the power of the Internet to help parents ask questions they wanted to have answered by scientific research and to feel confident in assessing research evidence. Methods By using Facebook to recruit groups and facilitate interactions, PSG was able to engage fully the target public of parents of young children in the radical co-production of scientific studies, while not creating an undue burden on time or restricting participants due to disability, financial status or location. By giving parents true partnership and control of creation of projects, PSG ensured that the chosen questions were ones that were of most relevance and interest to them. Results This paper presents a summary of eight projects, with three in more detail, designed and implemented by PSG Facebook groups in collaboration with experts. Most projects had health related themes, often prompted by dissatisfaction with treatment of parents by health professionals or by feelings of being marginalised by pregnancy and motherhood, as well as by the lack of evidence for their questions and concerns. The PSG approach meant that these frustrations were channelled into actions. All eight of the PSG groups engaged in meaningful interactions with experts and co-produced studies with the groups defining the questions of interest. Conclusions This radically user-led design meant that the PSG staff and the collaborating experts had to live with a high degree of uncertainty. Nevertheless, PSG achieved its goal of academically productive, truly co-produced projects, but as important were the positive effects it had on many of the participants, both parents and experts. At the point of writing this paper, PSG projects have led to outputs including at least eight papers published, in press or in preparation, seven conference presentations, testimony to the Infant Feeding All-Party Parliamentary Group, and with more to come

    Senescence Is More Important in the Natural Lives of Long- Than Short-Lived Mammals

    Get PDF
    Senescence has been widely detected among mammals, but its importance to fitness in wild populations remains controversial. According to evolutionary theories, senescence occurs at an age when selection is relatively weak, which in mammals can be predicted by adult survival rates. However, a recent analysis of senescence rates found more age-dependent mortalities in natural populations of longer lived mammal species. This has important implications to ageing research and for understanding the ecological relevance of senescence, yet so far these have not been widely appreciated. We re-address this question by comparing the mean and maximum life span of 125 mammal species. Specifically, we test the hypothesis that senescence occurs at a younger age relative to the mean natural life span in longer lived species.We show, using phylogenetically-informed generalised least squares models, a significant log-log relationship between mean life span, as calculated from estimates of adult survival for natural populations, and maximum recorded life span among mammals (R2=0.57, p<0.0001). This provides further support for a key prediction of evolutionary theories of ageing. The slope of this relationship (0.353+/-0.052 s.e.m.), however, indicated that mammals with higher survival rates have a mean life span representing a greater fraction of their potential maximum life span: the ratio of maximum to mean life span decreased significantly from >10 in short-lived to approximately 1.5 in long-lived mammal species.We interpret the ratio of maximum to mean life span to be an index of the likelihood an individual will experience senescence, which largely determines maximum life span. Our results suggest that senescence occurs at an earlier age relative to the mean life span, and therefore is experienced by more individuals and remains under selection pressure, in long- compared to short-lived mammals. A minimum rate of somatic degradation may ultimately limit the natural life span of mammals. Our results also indicate that senescence and modulating factors like oxidative stress are increasingly important to the fitness of longer lived mammals (and vice versa)

    The Coevolution of Virulence: Tolerance in Perspective

    Get PDF
    Coevolutionary interactions, such as those between host and parasite, predator and prey, or plant and pollinator, evolve subject to the genes of both interactors. It is clear, for example, that the evolution of pollination strategies can only be understood with knowledge of both the pollinator and the pollinated. Studies of the evolution of virulence, the reduction in host fitness due to infection, have nonetheless tended to focus on parasite evolution. Host-centric approaches have also been proposed—for example, under the rubric of “tolerance”, the ability of hosts to minimize virulence without necessarily minimizing parasite density. Within the tolerance framework, however, there is room for more comprehensive measures of host fitness traits, and for fuller consideration of the consequences of coevolution. For example, the evolution of tolerance can result in changed selection on parasite populations, which should provoke parasite evolution despite the fact that tolerance is not directly antagonistic to parasite fitness. As a result, consideration of the potential for parasite counter-adaptation to host tolerance—whether evolved or medially manipulated—is essential to the emergence of a cohesive theory of biotic partnerships and robust disease control strategies
    corecore