383 research outputs found
Quality aware selective ECC for approximate DRAM
Approximate DRAMs are DRAM memories where energy saving techniques have been implemented by trading off bit-cell error rate with power consumption. They are considered part of the building blocks in the larger area of approximate computing. Relaxing refresh rate has been proposed as an interesting solution to achieve better efficiency at the expense of rising error rate. However, some works have demonstrated that much better results are achieved if at word-level some bits are retained without errors (i.e. their cells are refreshed at nominal rate), resulting in architectures using multiple refresh rates. In this paper we present a technique that can be applied to approximate DRAMs under reduced refresh rate. It allows to trim error rate at word-level, while still performing the refresh operation at the same rate for all cells. The number of bits that are protected is configurable and depends on output quality degradation that can be accepted by the application
A GIS-based statistical approach to prioritize the retrofit of housing stocks at the urban scale
Cities are responsible for about 70% of the overall primary energy consumption in Europe and play a major role in addressing carbon mitigation. In this respect, the housing s ector has been identified as a key sector for its high energy savings potential achievable by implementing retrofit measures. However, a detailed characterization of the housing energy consumption profile and spatial distribution is needed to properly asse ss the energy saving potential at the urban scale and further support sustainable urban planning and energy policies.
This study focused on a statistical approach based on Geographical Information Systems (GIS) developed to identify the energy consumption profile of urban housing stocks, the energy savings potential achievable by implementing retrofit measures and their respective spatial distribution across one entire city. The final energy consumption of individual dwellings was predicted by running a mul tiple linear regression model based on measured energy consumption available at aggregated level (post - code area level) and GIS data about characteristics of buildings and household. Energy savings potential and cost - effectiveness of standard retrofit meas ures were subsequently calculated and results were finally displayed as maps for decision support in sustainable urban planning. The methodology was applied to the exemplary housing stock of Rotterdam city, consisting of almost 300,000 units.
Relevant res ults were provided to prioritize retrofit measures implementation according to energy savings potential and cost - effectiveness. Different types of maps were produced to show energy consumption and energy saving potential patterns across the city. The metho dology is generically applicable to other contexts and provides an effective tool for decision support in carbon mitigation policies of housing stocks at the urban scale
The 1980 earthquake in southern Italy: rescue of trapped victims and mortality.
A retrospective survey was undertaken on the health effects of the 1980 earthquake in southern Italy. The study population included 3619 people living in 7 villages situated near the epicentre of the disaster. The overall casualty rate (dead and injured) was 19.7%. Nearly all the deaths (192/202) occurred among trapped people who died before they could be rescued. Eighty per cent of all the trapped people were extricated within 2 days, mostly without the use of sophisticated means. The probability of survival decreased sharply, the longer the time before extrication. The crude mortality during the 18 months following the earthquake was 19.0 per thousand among the injured people who received treatment, and 14.1 per thousand among non-injured people. After age standardization, there was no significant difference between these two figures and the expected mortality figures for the Italian population in normal times (14.4 per thousand). These results stress the importance of providing rescue activities in the first 48 hours after the impact. Strengthening the self-reliance of the community in disaster preparedness is suggested as the best way to improve the effectiveness of relief operations. In disaster-prone areas, training and education in methods of rescue should be an integral part of any primary health care programme
Design and evaluation of artificial controllers assisting voluntary balance performance in paraplegia and in stroke
The mobility impairment caused by a paralysis like a spinal cord injury or a stroke has, beside many other impacts, an influence on the transfer of signals between the muscles of the lower extremities and the brain. In a paraplegic person, this means that she or he can not stand without holding onto a support or standing in a standing frame while the impact on the ability to balance in a hemiplegic person can be less severe. Although the connection between the muscles and the brain is impaired by the injury, the muscles still retain the ability to contract if innervated. This thesis describes control approaches which combine the remaining voluntary control of the paraplegic and stroke patients with the artificially controlled stimulation of the muscles of the paralysed limbs to aid the subject in balancing. The aim was to develop new control approaches which would assist balance in paraplegic subjects and in stroke. To support standing in paraplegic subjects, the moment generated at the ankle using electrical stimulation of the shank muscles was integrated with the voluntary control of the upper body, resulting in the concept of Integrated Voluntary Control (IVC). In the outer loop the ankle moment produced by the paraplegic subject due to his voluntary upper body movement was estimated using a mathematical model based on the inclination angles of upper and lower body. This estimated ankle moment was then compared with the actual moment applied at the force plates the subject was standing on, and an appropriate stimulation signal was applied to the paralysed shank muscles. Experimental evaluation initially involved four able bodied volunteers in which base line results with stiffness and stiffness-viscosity controllers using a rotating standing platform were obtained. This was extended to the paraplegic subject, where electrical muscle stimulation was used to generate the required ankle moment. The IVC concept was then evaluated with the paraplegic subject and compared to the base line results. Due to the nature of the system and implied perturbation onto the control system controlling the posture of the paraplegic subject the known evaluation values (e.g. rise time, steady state value, overshoot value etc.) are not suitable. Therefore, the variance of a time signal around its mean value was used as an evaluation value which allowed to compare the achieved performance of the paraplegic subject employing the new control approach with the stiffness and stiffness-viscosity controllers directly. To assist balance in stroke patients, a new training approach was introduced based on the concept of integrating the voluntary abilities of the patient with mechanical balance support and sensory electrical stimulation. This concept was evaluated in a training program with one stroke subject which demonstrated the feasibility and potential balance improvement resulting from this approach.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells
In differentiated cells, aging is associated with hypermethylation of DNA regions enriched in repressive histone post-translational modifications. However, the chromatin marks associated with changes in DNA methylation in adult stem cells during lifetime are still largely unknown. Here, DNA methylation profiling of mesenchymal stem cells (MSCs) obtained from individuals aged 2 to 92 yr identified 18,735 hypermethylated and 45,407 hypomethylated CpG sites associated with aging. As in differentiated cells, hypermethylated sequences were enriched in chromatin repressive marks. Most importantly, hypomethylated CpG sites were strongly enriched in the active chromatin mark H3K4me1 in stem and differentiated cells, suggesting this is a cell type-independent chromatin signature of DNA hypomethylation during aging. Analysis of scedasticity showed that interindividual variability of DNA methylation increased during aging in MSCs and differentiated cells, providing a new avenue for the identification of DNA methylation changes over time. DNA methylation profiling of genetically identical individuals showed that both the tendency of DNA methylation changes and scedasticity depended on nongenetic as well as genetic factors. Our results indicate that the dynamics of DNA methylation during aging depend on a complex mixture of factors that include the DNA sequence, cell type, and chromatin context involved and that, depending on the locus, the changes can be modulated by genetic and/or external factors
H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells
In differentiated cells, aging is associated with hypermethylation of DNA regions enriched in repressive histone post-translational modifications. However, the chromatin marks associated with changes in DNA methylation in adult stem cells during lifetime are still largely unknown. Here, DNA methylation profiling of mesenchymal stem cells (MSCs) obtained from individuals aged 2 to 92 yr identified 18,735 hypermethylated and 45,407 hypomethylated CpG sites associated with aging. As in differentiated cells, hypermethylated sequences were enriched in chromatin repressive marks. Most importantly, hypomethylated CpG sites were strongly enriched in the active chromatin mark H3K4me1 in stem and differentiated cells, suggesting this is a cell type-independent chromatin signature of DNA hypomethylation during aging. Analysis of scedasticity showed that interindividual variability of DNA methylation increased during aging in MSCs and differentiated cells, providing a new avenue for the identification of DNA methylation changes over time. DNA methylation profiling of genetically identical individuals showed that both the tendency of DNA methylation changes and scedasticity depended on nongenetic as well as genetic factors. Our results indicate that the dynamics of DNA methylation during aging depend on a complex mixture of factors that include the DNA sequence, cell type, and chromatin context involved and that, depending on the locus, the changes can be modulated by genetic and/or external factors
- …