
Quality aware selective ECC for approximate
DRAM

Giulia Stazi, Antonio Mastrandrea, Mauro Olivieri, and Francesco Menichelli

Dept. of Information Engineering, Electronics and Telecommunications (DIET)
Sapienza University of Rome, Via Eudossiana, 18, 00184 Roma, Italy

{g.stazi,antonio.mastrandrea,mauro.olivieri,francesco.menichelli}@

uniroma1.it

Abstract. Approximate DRAMs are DRAM memories where energy
saving techniques have been implemented by trading off bit-cell error
rate with power consumption. They are considered part of the building
blocks in the larger area of approximate computing.
Relaxing refresh rate has been proposed as an interesting solution to
achieve better efficiency at the expense of rising error rate. However,
some works have demonstrated that much better results are achieved
if at word-level some bits are retained without errors (i.e. their cells
are refreshed at nominal rate), resulting in architectures using multiple
refresh rates.
In this paper we present a technique that can be applied to approximate
DRAMs under reduced refresh rate. It allows to trim error rate at word-
level, while still performing the refresh operation at the same rate for all
cells. The number of bits that are protected is configurable and depends
on output quality degradation that can be accepted by the application.

Keywords: Approximate memory, Transprecision Computing, ECCmem-
ory

1 Introduction and previous works

Approximate computing is a design paradigm for low power systems that pro-
poses to expand the degrees of freedom in digital system design by allowing
inaccurate or approximate operations in circuits. The idea at the base of ap-
proximate computing is the fact that many real-world applications do not re-
quire exact mathematical computations, since their input and output data are
inherently affected by noise and errors. Approximate memories are part of the
building blocks of this approach and are intended as memory circuits that do not
store data exactly and indefinitely, but are affected by errors during read/write
operations or tend to spontaneously forget data with the passage of time [1, 2].

Depending on their technology, circuits for approximate memory have been
proposed by scaling Vdd for SRAMs [3] and by reducing refresh rate under the
nominal value for DRAMs [4]. These circuit-level proposals lay the groundwork
for practical implementations that can be used in programmable architectures as

2 G.Stazi et al.

main approximate memory [5]. Applications that can tolerate a certain amount
of errors can then allocate their data structures and buffers in these memories.
These application, called ETAs (Error Tolerant Applications), will produce an
output with degraded quality as the effect using approximate memories. The final
assumption of approximate computing is that the amount of approximation (i.e.
errors) can be tailored on the specific problem, trading off energy savings up to
the limit of acceptable output quality.

2 Approximate memories in real applications

The first approach to approximate memories relies on allowing errors uniformly
distributed on the array of bit cells (i.e. all cells are subject to the same voltage
scaling or the same refresh rate). The validity of the choice is based mostly on
the simplification that it involves at circuit level, since it does not require to
modify the array internal circuit, but signals and power supply at the interfaces.
However, considering uniform error distribution means to not take into account
the exponential relation between different bit weights in a data word, which is
instead an important characteristic that should be considered by approximate
memory circuit, even at the expense of increasing circuit complexity.

2.1 Exact MSBs in an approximate data word

The first and intuitive approach is to design the memory array in order to save
MSBs in exact bit-cells. Considering DRAMs, [6] proposes using two different
refresh rates, one at nominal rate and one at reduced rate. Cell arrays are rear-
ranged in a way that the nominal refresh rate is applied to bit cells for MSBs
(exact MSBs), while the reduced refresh rate is applied to bit cells for LSBs (ap-
proximate LSBs). The number of exact MSBs and approximate LSBs depends
on applications, for example, for 32bit words a number from 1 to 8 exact MSBs
and, respectively, 31 to 24 approximate LSBs have been found to be of interest
[7]. Requiring exact cells in an approximate data word has direct impact on the
following characteristics:

– it raises output quality under the same error rate in LSB cells or, conversely,
allows for higher error rate in LSBs while meeting the required output qual-
ity;

– it reduces overall energy saving, since a portion of the cells is working at
nominal conditions;

– it increases circuit complexity requiring dual refresh rate in DRAMs.

2.2 Bit dropping for LSBs and bit reuse

The second approach results from exploration of the relation between output
quality and BER on the LSBs [7]. LSBs in a data word can be dropped and set
to a constant value (i.e. 0) with a marginal impact on output quality degradation.

Quality Aware Selective ECC for Approximate DRAM 3

Table 1. List of Hamming codes

#Check bits (n-k) #Total bits (n) #Data bits (k) Name Rate

2 3 1 Hamming(3,1) 1/3

3 7 4 Hamming(7,4) 4/7

4 15 11 Hamming(15,11) 11/15

5 31 26 Hamming(31,26) 26/31

6 63 57 Hamming(63,57) 57/63

It is a technique that is proposed since it achieves energy savings with a simple
circuit implementation (bit cells are powered off or even omitted).

Previous works have proposed to use selective ECC in SRAM to reduce errors
in MSB (1) by enlarging memory words as in classical ECC memory systems
(i.e. 32bit memory word are expanded to 36bit, introducing 4bit ECC) [8] (2)
by reusing LSB dropped bits [9]. The contribute of our work is (1) to design
selective ECC specific for approximate DRAM memory systems (2) to allow
tailoring selective ECC to the specific application, by first analyzing its output
quality degradation related to bit error rate, looseness level and dropped bits.

3 Quality aware selective ECC

The idea of quality aware selective ECC consists in a two step process. First,
an application is analyzed in order to find the desired tradeoff between output
quality and approximate memory parameters (i.e. error rate, level of approx-
imation [1], dropped bit); then an error correcting code is chosen in order to
reduce error rate in a specific portion of data bits. In order to avoid increasing
memory requirements with additional ECC bit, bit dropping and reuse is always
considered for the additional check bits required by ECC.

3.1 ECC codes for approximate memories

In order to reduce hardware complexity, (n,k) SEC (single error correcting)
Hamming codes were considered. In this notation, k indicates the number of
protected bits (data bits), while n is the code length, including additional check
bits. We note that SEC codes can provide also error detection (e.g. double error
detection typically), but for our scope error detection is not used: in case of
detected errors, program execution continues as for undected errors, in approxi-
mate memory. Table 1 summarizes the most common Hamming codes. We note
that, as a general rule, increasing the number of data bits k produces more effi-
cient codes, since the rate k/n increases. However, larger k are effective at very
small error rates (as is common in exact memories). In approximate memories
typical error rates are much larger (i.e. from 10−4 to 10−2errors/(bit × s) [1])
and, as consequence, shorter codes are desirable since enlarging n increases the
probability of multiple errors within the same word, which cannot be corrected.

4 G.Stazi et al.

3.2 Looseness level

With Looseness Level we intend the concept, introduced in [1], of having a
certain number of exact MSBs in an approximate data words. As an example,
Table 2 (left) reports results obtained on a 32 bit integer FIR filter, showing how
Looseness level (i.e. the number of exact MSBs) can impact output SNR.

Instead of using exact DRAM cells for MSBs, the idea is to use a single, and
slower, refresh rate for all cells, while using SEC ECC in order to reduce error
rate in MSBs. In this way, MSBs are still affected by errors, but their error rate
is reduced with respect to LSB cells.

3.3 Impact of bit dropping and bit reuse

Table 2 (right) reports results obtained on the same 32 bit integer FIR filter,
showing how bit dropping (i.e. powering them off and reading them as ’0’) im-
pacts output SNR. As already confirmed in literature, output SNR is only slightly
dependent on LSBs. Instead of powering them off, these LSBs can be effectively
reused as checkbits for the MSBs, without requiring additional bits.

Table 2. FIR, output SNR [dB]

Looseness
Level

Fault rate [errors/(bit × s)]

10−1 10−2 10−3 10−4

12 MSBs 70.5 83.4 93.5 104.2

8 MSBs 46.5 59.6 69.3 80.3

4 MSBs 22.6 35.3 45.5 56.4

1 MSB 4.6 17.2 27.6 38.2

of dropped bits

4 LSBs 8 LSBs 12 LSBs 16 LSBs

134.7 122.4 106.1 82.2

4 Implementation and results

Given the list of Hamming codes in Table 1, it appears that the most suitable
for our application are Hamming (3,1),(7,4) and (15,11). This choice depends on
two factors, first we assume to protect single 32 bit words in memory, in order
to not impact read/write speed; infact, protecting with a single code larger data
size would require to multiple read/write on the entire data. Secondly, given the
relatively high bit error rate of approximate memories, longer SEC codes tend
to fail due to the rising probability of multiple errors.

Figure 1 shows the formats considered for 32 bit data, where k MSBs are
protected by SEC ECC, 32 − n bits are left unprotected and n − k dropped
and reused as checkbits. Assuming a uniform error probability pe for each bit,
expressed as errors/(bit× s), the probability of having i errors in a set of n bits
is:

Pe(n, i) =

(
n

i

)
pie(1− pe)

n−i;

Considering the SEC ECC code, protected bits will contain errors for i ≥ 2;
hence:

Pecce(n) =

n∑
i=2

Pe(n, i) =

n∑
i=2

(
n

i

)
pie(1− pe)

n−i;

Quality Aware Selective ECC for Approximate DRAM 5

In order to get a measure of the improvement, we can find the equivalent
error rate peqe, considered as the error rate that n bits (without ECC) should
have to produce the same Pecce(n).

Peqe(n) =

n∑
i=1

Pe(n, i) = 1−
0∑

i=0

Pe(n, i) = 1− (1− peqe)
n;

Equivalent bit error rate peqe for ECC protected bits can be obtained with
Peqe(n) = Pecce(n):

peqe = 1− n
√

1− Pecce(n);

Assuming 32 bit data stored in approximate memory, Figure 1 resumes how
selective ECC could be applied using Hamming (3,1), (7,4) and (15,11) codes.
The most appropriate choice depends on the application; for example, according
to Table 2, a range from 8 to 12 protected MSBs results in an output SNR
between 60dB to 93dB, while dropping 4 LSBs does not significantly impact
SNR. In this case Hamming (15,11) seems the most suitable choice.

Table 3 reports the results that can be obtained on typical target applica-
tion considering the previous Hamming codes. It shows that MSBs protected
by SEC codes expose and equivalent BER significanlty lower than unprotected
bits. Considering the previous example, Hamming (15,11) and a BER of 10−3

on cells produces an equivalent BER of 6.94× 10−6 on MSBs.

Fig. 1. 32 bit ECC data format in approximate memory

Table 3. BER for 32 bit data in approximate memory

Hamming (3,1) word

ECC prot. unprot. drop

1 bit 29 bit 2 bit

9.42E-03 1.00E-01 -

9.93E-05 1.00E-02 -

9.99E-07 1.00E-03 -

1.00E-08 1.00E-04 -

1.00E-10 1.00E-05 -

Hamming (7,4) word

ECC prot. unprot. drop

4 bit 25 bit 3 bit

2.29E-02 1.00E-01 -

2.90E-04 1.00E-02 -

2.99E-06 1.00E-03 -

3.00E-08 1.00E-04 -

3.00E-10 1.00E-05 -

Hamming (15,11) word

ECC prot. unprot. drop

11 bit 15 bit 4 bit

3.92E-02 1.00E-01 -

6.45E-04 1.00E-02 -

6.94E-06 1.00E-03 -

6.99E-08 1.00E-04 -

7.00E-10 1.00E-05 -

6 G.Stazi et al.

5 Conclusion

In this paper we proposed the use of selective ECC in approximate DRAM
memory tailored to quality requirements of applications. We started from the
consideration that in many works and use cases it has been demonstrated the
effectiveness of limiting approximate cells to LSBs while leaving a portion of
MSBs exact. However, this approach requires higher complexity in memory cir-
cuits and circuits surrounding the cell array. For DRAMs, it requires to produce
and distribute multiple refresh rates in the array.

Due to the relatively high error rates in approximate memories, SEC codes
reduce but do not eliminate errors. This is completely acceptable and we demon-
strated that for typical error rates in the order of 10−3 to 10−4, Hamming codes
(7,4) and (15,11) can reduce error rate on MSBs of factor between 1/100 to
1/1000. Future works will implement the technique in simulation models and
apply it to error tolerant applications, allowing the characterization and the
comparison with respect to previous techniques.

References

1. G. Stazi, A. Mastrandrea, M. Olivieri, and F. Menichelli, “Full system emulation
of approximate memory platforms with appropinquo,” Journal of Low Power Elec-
tronics, vol. 15, no. 1, pp. 30–39, 2019.

2. F. Menichelli, G. Stazi, A. Mastrandrea, and M. Olivieri, “An emulator for approx-
imate memory platforms based on qemu,” in International Conference on Applica-
tions in Electronics Pervading Industry, Environment and Society. Springer, 2016,
pp. 153–159.

3. F. Frustaci, D. Blaauw, D. Sylvester, and M. Alioto, “Approximate srams with
dynamic energy-quality management,” IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems, vol. 24, no. 6, pp. 2128–2141, 2016.

4. A. Raha, S. Sutar, H. Jayakumar, and V. Raghunathan, “Quality configurable ap-
proximate dram,” IEEE Transactions on Computers, vol. 66, no. 7, pp. 1172–1187,
2017.

5. G. Stazi, F. Menichelli, A. Mastrandrea, and M. Olivieri, “Introducing approxi-
mate memory support in linux kernel,” in Ph. D. Research in Microelectronics and
Electronics (PRIME), 2017 13th Conference on. IEEE, 2017, pp. 97–100.

6. J. Lucas, M. Alvarez-Mesa, M. Andersch, and B. Juurlink, “Sparkk: Quality-scalable
approximate storage in dram,” in The memory forum, 2014, pp. 1–9.

7. G. Stazi, L. Adani, A. Mastrandrea, M. Olivieri, and F. Menichelli, “Impact of
approximate memory data allocation on a h.264 software video encoder,” in In-
ternational workshop on Approximate and Transprecision Computing on Emerging
Technologies (ATCET). Springer, 2018.

8. I. Lee, J. Kwon, J. Park, and J. Park, “Priority based error correction code (ecc)
for the embedded sram memories in h. 264 system,” Journal of Signal Processing
Systems, vol. 73, no. 2, pp. 123–136, 2013.

9. F. Frustaci, D. Blaauw, D. Sylvester, and M. Alioto, “Better-than-voltage scaling
energy reduction in approximate srams via bit dropping and bit reuse,” in 2015
25th International Workshop on Power and Timing Modeling, Optimization and
Simulation (PATMOS). IEEE, 2015, pp. 132–139.

