1,460 research outputs found

    Inflammaging and Complement System: A Link Between Acute Kidney Injury and Chronic Graft Damage

    Get PDF
    The aberrant activation of complement system in several kidney diseases suggests that this pillar of innate immunity has a critical role in the pathophysiology of renal damage of different etiologies. A growing body of experimental evidence indicates that complement activation contributes to the pathogenesis of acute kidney injury (AKI) such as delayed graft function (DGF) in transplant patients. AKI is characterized by the rapid loss of the kidney’s excretory function and is a complex syndrome currently lacking a specific medical treatment to arrest or attenuate progression in chronic kidney disease (CKD). Recent evidence suggests that independently from the initial trigger (i.e., sepsis or ischemia/reperfusions injury), an episode of AKI is strongly associated with an increased risk of subsequent CKD. The AKI-to-CKD transition may involve a wide range of mechanisms including scar-forming myofibroblasts generated from different sources, microvascular rarefaction, mitochondrial dysfunction, or cell cycle arrest by the involvement of epigenetic, gene, and protein alterations leading to common final signaling pathways [i.e., transforming growth factor beta (TGF-β), p16ink4a, Wnt/β-catenin pathway] involved in renal aging. Research in recent years has revealed that several stressors or complications such as rejection after renal transplantation can lead to accelerated renal aging with detrimental effects with the establishment of chronic proinflammatory cellular phenotypes within the kidney. Despite a greater understanding of these mechanisms, the role of complement system in the context of the AKI-to-CKD transition and renal inflammaging is still poorly explored. The purpose of this review is to summarize recent findings describing the role of complement in AKI-to-CKD transition. We will also address how and when complement inhibitors might be used to prevent AKI and CKD progression, therefore improving graft function

    SARS-CoV-2 and Viral Sepsis: Immune Dysfunction and Implications in Kidney Failure

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of coronavirus disease 2019 (COVID-19), first emerged in Wuhan, China. The clinical manifestations of patients infected with COVID-19 include fever, cough, and dyspnea, up to acute respiratory distress syndrome (ARDS) and acute cardiac injury. Thus, a lot of severe patients had to be admitted to intensive care units (ICU). The pathogenic mechanisms of SARS-CoV-2 infection are mediated by the binding of SARS-CoV-2 spikes to the human angiotensin-converting enzyme 2 (ACE-2) receptor. The overexpression of human ACE-2 is associated with the disease severity in SARS-CoV-2 infection, demonstrating that viral entry into cells is a pivotal step. Although the lung is the organ that is most commonly affected by SARS-CoV-2 infection, acute kidney injury (AKI), heart dysfunction and abdominal pain are the most commonly reported co-morbidities of COVID-19. The occurrence of AKI in COVID-19 patients might be explained by several mechanisms that include viral cytopathic effects in renal cells and the host hyperinflammatory response. In addition, kidney dysfunction could exacerbate the inflammatory response started in the lungs and might cause further renal impairment and multi-organ failure. Mounting recent evidence supports the involvement of cardiovascular complications and endothelial dysfunction in COVID-19 syndrome, in addition to respiratory disease. To date, there is no vaccine, and no specific antiviral medicine has been shown to be effective in preventing or treating COVID-19. The removal of pro-inflammatory cytokines and the shutdown of the cytokine storm could ameliorate the clinical outcome in severe COVID-19 cases. Therefore, several interventions that inhibit viral replication and the systemic inflammatory response could modulate the severity of the renal dysfunction and increase the probability of a favorable outcome

    Evolution of the mass-loss rate during atmospheric and pressurized slow pyrolysis of wheat straw in a bench-scale reactor

    Get PDF
    In the present study, the effects of the absolute pressure (0.1 or 0.5 MPa) and the reactor atmosphere (pure N2 or a mixture of CO2/N2) on the pyrolysis behavior of wheat straw pellets (at 500 °C) were investigated. The most interesting aspect of this work was the use of a weighing platform (with a maximum capacity of 100 kg and a resolution of 0.5 g) to monitor the real-time mass-loss data for the biomass sample (with an initial mass of 400 g). It was observed that an increased pressure considerably affects the mass-loss profiles during the pyrolysis process, leading to higher devolatilization rates in a shorter period of time. Regardless of the pyrolysis atmosphere, an increase in the absolute pressure led to higher yields of gas at the expense of produced water and condensable organic compounds. This finding could be due to the fact that an increased pressure favors the exothermic secondary reactions of the intermediate volatile organic compounds in both liquid and vapor phases. The switch from pure N2 to a mixture of CO2 and N2 at 0.1 MPa also led to a remarkable increase in the yield of produced gas at the expense of the total liquid. This could be mainly due to the promotion of the thermal cracking of the volatile organic compounds at a high partial pressure of CO2, which is also consistent with the measured higher yields of CH4 and CO. The increased yield of CO can also be seen as a direct result of the enhanced reverse Boudouard reaction, which can also explain the much higher specific surface area (and ultra-micropore volume) measured for the biochar produced under the same operating conditions (0.1 MPa and a mixture CO2/N2 as pyrolysis medium)

    Intravesical electromotive mitomycin C versus passive transport mitomycin C for high risk superficial bladder cancer: a prospective randomized study.

    Get PDF
    PURPOSE: In laboratory studies electromotive mitomycin C (MMC) demonstrated markedly increased transport rates compared with passive transport. We performed a prospective study in patients with high risk superficial bladder cancer to assess the efficacy of intravesical electromotive vs passive MMC using bacillus Calmette-Guerin (BCG) as a comparative treatment. MATERIALS AND METHODS: Following transurethral resection and multiple biopsies 108 patients with multifocal Tis, including 98 with T1 tumors, were randomized into 3 equal groups of 36 each who underwent 40 mg electromotive MMC instillation with 20 mA electric current for 30 minutes, 40 mg passive MMC with a dwell time of 60 minutes or 81 mg BCG with a dwell time of 120 minutes. Patients were scheduled for an initial 6 weekly treatments, a further 6 weekly treatments for nonresponders and a followup 10 monthly treatments for responders. Primary end points were the complete response rate at 3 and 6 months. MMC pharmacokinetics were assessed. RESULTS: The complete response for electromotive vs passive MMC at 3 and 6 months was 53% versus 28% (p = 0.036) and 58% versus 31% (p = 0.012). For BCG the responses were 56% and 64%. Median time to recurrence was 35 vs 19.5 months (p = 0.013) and for BCG it was 26 months. Peak plasma MMC was significantly higher following electromotive MMC than after MMC (43 vs 8 ng/ml), consistent with bladder content absorption. CONCLUSIONS: Intravesical electromotive administration increases bladder uptake of MMC, resulting in an improved response rate in cases of high risk superficial bladder cancer

    Evolution of the Mass Loss Rate During Atmospheric and Pressurized Slow Pyrolysis of Wheat Straw in a Bench-Scale Reactor

    Get PDF
    A deep study focused on the significant effect of the absolute pressure on the yield of produced gas during the slow pyrolysis of biomass was carried out. In addition, the evolution of the mass loss rate linked to the pyrolysis process was also analyzed

    Minimally invasive percutaneous treatment for osteoid osteoma of the Spine. A case report

    Get PDF
    Osteoid osteomas are benign but painful bone-forming tumors usually involving long bones, with localization at the spine in 10-20% of the cases. The most common symptom is back pain responding to nonsteroidal anti-inflammatory drugs, but in some cases, also radicular pain can be present. For years, surgical excision has been considered the best choice of treatment for cases with unresponsive pain and has been practiced with a high percentage of success but also a high rate of fusion with instrumentation. In the last years, percutaneous radiofrequency ablation has been proposed as a new mini-invasive technique for the treatment of osteoid osteomas

    Neuromarketing empirical approaches and food choice: A systematic review

    Get PDF
    Consumers' food choices are often driven by reasons of which consumers are not fully aware. Decision-making about food is influenced by a complex set of emotions, feelings, attitudes, and values that are impossible to assess simply by asking consumers their opinions. Indeed, traditional techniques, such as self-reports or interviews, mainly allow the measurement of conscious and rational reactions to a product or advertising. Recently, there has been a rapidly growing interest in the multidisciplinary field of “neuromarketing,” which takes advantage of neuroscientific techniques to study consumer behavior. This discipline applies neuroscientific methods and tools that allow the measurement of consumers' emotional and spontaneous reactions in a more objective and observable way. The aim of this paper is (a) to describe neuromarketing's underlying assumptions, techniques, and the advantages of this perspective, examining the scientific literature on the use of neuromarketing in food studies; and (b) to suggest best practices to apply this novel approach in the food marketing domain, with a specific focus on non-invasive methods. Finally, although the perception of nutritional elements has already been explored, the health content of labels, the presence of additives, and the evaluation of the information conveyed by food packaging remain other possible elements of interest in future food neuromarketing research

    Intravesical oxybutynin: mode of action assessed by passive diffusion and electromotive administration with pharmacokinetics of oxybutynin and N-desethyl oxybutynin.

    Get PDF
    PURPOSE: A proportion of patients with detrusor hyperreflexia who are unresponsive to oral oxybutynin often benefit from intravesical oxybutynin instillation. To our knowledge the precise mode of action of this method is obscure. MATERIALS AND METHODS: In 12 patients with detrusor hyperreflexia who were previously unresponsive to oral and intravesical passive diffusion of 5 mg. oxybutynin we administered 5 mg. oxybutynin orally as well as increased doses of 15 mg. oxybutynin intravesically with passive diffusion and with 15 mA. associated electric current. Each administration mode per patient was associated with an 8-hour urodynamic monitoring session during which oxybutynin and N-desethyl oxybutynin plasma levels, and intravesical oxybutynin uptake were measured. RESULTS: A dose of 5 mg. oxybutynin orally induced no urodynamic improvement with an area under the plasma concentration time curve of combined N-desethyl oxybutynin plus oxybutynin of 16,297 ng./8 hours and an area under the curve ratio of N-desethyl oxybutynin-to-oxybutynin of 11:1. Passive diffusion oxybutynin resulted in 12 mg. oxybutynin intravesical uptake and significant improvement in 3 of 8 urodynamic measurements, although the area under the curve of combined N-desethyl oxybutynin plus oxybutynin was only 2,123 ng./8 hours and the N-desethyl oxybutynin-to-oxybutynin ratio was 1.1:1.0. Electromotive administration of oxybutynin resulted in almost complete intravesical uptake of the 15 mg. dose, significant improvement in all 8 urodynamic measurements and an increased oxybutynin level versus oral and passive diffusion, although the area under the curve of combined N-desethyl oxybutynin plus oxybutynin was 4,574 ng./8 hours and the N-desethyl oxybutynin-to-oxybutynin ratio was inverted at 1.0:1.4. The oral dose of 5 mg. oxybutynin caused anticholinergic side effects in 8 of the 12 patients. Neither intravesical passive diffusion nor electromotive administration caused side effects with an uptake of 12 and 15 mg., respectively. CONCLUSIONS: A large proportion of intravesical oxybutynin is sequestered, probably in the urothelium. Intravesical oxybutynin administration confers therapeutic benefits via localized direct action within the bladder wall. Comment in Intravesical treatment of bladder dysfunction. [J Urol. 2001
    • …
    corecore