6 research outputs found

    Air pollution as a carcinogen.

    Get PDF
    Background Magnetic resonance spectroscopy provides metabolic information about living tissues in a non-invasive way. However, there are only few multi-centre clinical studies, mostly performed on a single scanner model or data format, as there is no flexible way of documenting and exchanging processed magnetic resonance spectroscopy data in digital format. This is because the DICOM standard for spectroscopy deals with unprocessed data. This paper proposes a plugin tool developed for jMRUI, namely jMRUI2XML, to tackle the latter limitation. jMRUI is a software tool for magnetic resonance spectroscopy data processing that is widely used in the magnetic resonance spectroscopy community and has evolved into a plugin platform allowing for implementation of novel features. Results jMRUI2XML is a Java solution that facilitates common preprocessing of magnetic resonance spectroscopy data across multiple scanners. Its main characteristics are: 1) it automates magnetic resonance spectroscopy preprocessing, and 2) it can be a platform for outputting exchangeable magnetic resonance spectroscopy data. The plugin works with any kind of data that can be opened by jMRUI and outputs in extensible markup language format. Data processing templates can be generated and saved for later use. The output format opens the way for easy data sharing- due to the documentation of the preprocessing parameters and the intrinsic anonymization - for example for performing pattern recognition analysis on multicentre/multi-manufacturer magnetic resonance spectroscopy data. Conclusions jMRUI2XML provides a self-contained and self-descriptive format accounting for the most relevant information needed for exchanging magnetic resonance spectroscopy data in digital form, as well as for automating its processing. This allows for tracking the procedures the data has undergone, which makes the proposed tool especially useful when performing pattern recognition analysis. Moreover, this work constitutes a first proposal for a minimum amount of information that should accompany any magnetic resonance processed spectrum, towards the goal of achieving better transferability of magnetic resonance spectroscopy studies

    Water removal in MR spectroscopic imaging with Casorati singular value decomposition.

    Get PDF
    PURPOSE Water removal is one of the computational bottlenecks in the processing of high-resolution MRSI data. The purpose of this work is to propose an approach to reduce the computing time required for water removal in large MRS data. METHODS In this work, we describe a singular value decomposition-based approach that uses the partial position-time separability and the time-domain linear predictability of MRSI data to reduce the computational time required for water removal. Our approach arranges MRS signals in a Casorati matrix form, applies low-rank approximations utilizing singular value decomposition, removes residual water from the most prominent left-singular vectors, and finally reconstructs the water-free matrix using the processed left-singular vectors. RESULTS We have demonstrated the effectiveness of our proposed algorithm for water removal using both simulated and in vivo data. The proposed algorithm encompasses a pip-installable tool ( https://pypi.org/project/CSVD/), available on GitHub ( https://github.com/amirshamaei/CSVD), empowering researchers to use it in future studies. Additionally, to further promote transparency and reproducibility, we provide comprehensive code for result replication. CONCLUSIONS The findings of this study suggest that the proposed method is a promising alternative to existing water removal methods due to its low processing time and good performance in removing water signals

    From raw data to data-analysis for magnetic resonance spectroscopy - the missing link : jMRUI2XML

    No full text
    Background: Magnetic resonance spectroscopy provides metabolic information about living tissues in a non-invasive way. However, there are only few multi-centre clinical studies, mostly performed on a single scanner model or data format, as there is no flexible way of documenting and exchanging processed magnetic resonance spectroscopy data in digital format. This is because the DICOM standard for spectroscopy deals with unprocessed data. This paper proposes a plugin tool developed for jMRUI, namely jMRUI2XML, to tackle the latter limitation. jMRUI is a software tool for magnetic resonance spectroscopy data processing that is widely used in the magnetic resonance spectroscopy community and has evolved into a plugin platform allowing for implementation of novel features. Results: jMRUI2XML is a Java solution that facilitates common preprocessing of magnetic resonance spectroscopy data across multiple scanners. Its main characteristics are: 1) it automates magnetic resonance spectroscopy preprocessing, and 2) it can be a platform for outputting exchangeable magnetic resonance spectroscopy data. The plugin works with any kind of data that can be opened by jMRUI and outputs in extensible markup language format. Data processing templates can be generated and saved for later use. The output format opens the way for easy data sharing- due to the documentation of the preprocessing parameters and the intrinsic anonymization - for example for performing pattern recognition analysis on multicentre/multimanufacturer magnetic resonance spectroscopy data. Conclusions: jMRUI2XML provides a self-contained and self-descriptive format accounting for the most relevant information needed for exchanging magnetic resonance spectroscopy data in digital form, as well as for automating its processing. This allows for tracking the procedures the data has undergone, which makes the proposed tool especially useful when performing pattern recognition analysis. Moreover, this work constitutes a first proposal for a minimum amount of information that should accompany any magnetic resonance processed spectrum, towards the goal of achieving better transferability of magnetic resonance spectroscopy studies

    Fast high-resolution metabolite mapping on a preclinical 14.1T scanner using 1H-FID-MRSI

    No full text
    1H-MRSI enables a simultaneous acquisition of MR-spectra from multiple spatial locations inside the brain. While 1H-MRSI is increasingly used in the human brain, its implementation in preclinical setting is limited because of the smaller size of rodent brain. At UHF for humans, 1H-FID-MRSI acquisitions are increasingly used (T2 and J-evolution minimization, increased SNR). We present the first implementation of fast 1H-FID-MRSI in the rat brain at 14.1T and exploit its potential for an increased brain coverage, reliable and accurate quantification results and metabolic maps. Our results set the grounds for a wider application of 1H-FID-MRSI in the preclinical setting

    センターの増改築にあたって

    No full text
    Proton MR spectra of the brain, especially those measured at short and intermediate echo times, contain signals from mobile macromolecules (MM). A description of the main MM is provided in this consensus paper. These broad peaks of MM underlie the narrower peaks of metabolites and often complicate their quantification but they also may have potential importance as biomarkers in specific diseases. Thus, separation of broad MM signals from low molecular weight metabolites enables accurate determination of metabolite concentrations and is of primary interest in many studies. Other studies attempt to understand the origin of the MM spectrum, to decompose it into individual spectral regions or peaks and to use the components of the MM spectrum as markers of various physiological or pathological conditions in biomedical research or clinical practice. The aim of this consensus paper is to provide an overview and some recommendations on how to handle the MM signals in different types of studies together with a list of open issues in the field, which are all summarized at the end of the paper
    corecore