25 research outputs found

    Encouraging Sustainable Energy Use in the Office with Persuasive Mobile Information Systems

    Get PDF
    Faced with growing pressures to be more environmentally sustainable, many companies are increasingly exploring innovative ways to incorporate “green” practices into their business processes. We focus on employees and their potential contributions to organization-wide sustainability goals through their pro-environmental behaviours. This article reports on current progress with a multi-year study targeting the use of mobile media to encourage pro-environmental behaviours. To do so, we provide employees with feedback on their computer-based energy usage. We discuss our combined design science and experimental approach to developing and studying a mobile application with embedded persuasive characteristics. Our future interventions will use this persuasive media platform to examine the impact of social-psychological theories on encouraging more sustainable energy use by employees

    Influences of the equatorward SuperDARN expansion on data coverage and measured parameters

    Get PDF
    The Super Dual Auroral Radar Network (SuperDARN) was built to study ionospheric convection at Earth and has in recent years been expanded equatorward to observe ionospheric flows over a larger latitude range. The SuperDARN expansion to midlatitudes started in 2005 with the building of the Wallops Island Radar at 37.93 degrees geographic latitude, and a geographic longitude of -75.47 degrees. Since then, nine more mid-latitude radars have been added to the network, allowing us to measure ionospheric convection on a larger scale than ever before. Using data from the years 2012 to 2018, we perform a statistical analysis on processed SuperDARN convection maps for the entire dataset.  We process a number of versions of the maps, using different background models both with and without the inclusion of data from midlatitude radars. This enables us to explore the difference the addition these radars make to the dataset, as well as simulate how much information was missing from the previous decades of SuperDARN research. To show the importance of growing the radar network to include measurements at mid-latitudes we study a variety of parameters, such as changes in the equatorward boundary of the ionospheric electric field, changes in the cross polar cap potential, changes in the locations of the minimum and maximum potentials, and the width of the return flow region. We show that there is a clear difference between the datasets, especially when comparing the measured parameters to geomagnetic indices, such as AL

    Super Dual Auroral Radar Network Expansion and its Influence on the Derived Ionospheric Convection Pattern

    Get PDF
    The Super Dual Auroral Radar Network (SuperDARN) was built to study ionospheric convection and has in recent years been expanded geographically. Alongside software developments, this has resulted in many different versions of the convection maps data set being available. Using data from 2012 to 2018, we produce five different versions of the widely used convection maps, using limited backscatter ranges, background models and the exclusion/inclusion of data from specific radar groups such as the StormDARN radars. This enables us to simulate how much information was missing from older SuperDARN research. We study changes in the Heppner-Maynard boundary (HMB), the cross polar cap potential (CPCP), the number of backscatter echoes (n) and the χ2/n statistic which is a measure of the global agreement between the measured and fitted velocities. We find that the CPCP is reduced when the PolarDARN radars are introduced, but then increases again when the StormDARN radars are added. When the background model is changed from the RG96 model, to the most recent TS18 model, the CPCP tends to decrease for lower values, but tends to increase for higher values. When comparing to geomagnetic indices, we find that there is on average a linear relationship between the HMB and the geomagnetic indices, as well as n, which breaks when the HMB is located at latitudes below ∼50° due to the low observational density. Whilst n is important in constraining the maps (maps with n > 400 data points are unlikely to differ), it is insufficient as the sole measure of quality

    Dusk-Dawn Asymmetries in SuperDARN Convection Maps

    Get PDF
    The Super Dual Auroral Radar Network (SuperDARN) is a collection of radars built to study ionospheric convection. We use a 7-year archive of SuperDARN convection maps, processed in 3 different ways, to build a statistical understanding of dusk-dawn asymmetries in the convection patterns. We find that the data set processing alone can introduce a bias which manifests itself in dusk-dawn asymmetries. We find that the solar wind clock angle affects the balance in the strength of the convection cells. We further find that the location of the positive potential foci is most likely observed at latitudes of 78° for long periods (>300 min) of southward interplanetary magnetic field (IMF), as opposed to 74° for short periods

    Do statistical models capture the dynamics of the magnetopause during sudden magnetospheric compressions?

    Get PDF
    Under periods of strong solar wind driving, the magnetopause can become compressed, playing a significant role in draining electrons from the outer radiation belt. Also termed “magnetopause shadowing,” this loss process has traditionally been attributed to a combination of magnetospheric compression and outward radial diffusion of electrons. However, the drift paths of relativistic electrons and the location of the magnetopause are usually calculated from statistical models and, as such, may not represent the time‐varying nature of this highly dynamic process. In this study, we construct a database ∼20,000 spacecraft crossings of the dayside magnetopause to quantify the accuracy of the commonly used Shue et al. (1998, https://doi.org/10.1029/98JA01103) model. We find that, for the majority of events (74%), the magnetopause model can be used to estimate magnetopause location to within ±1 RE. However, if the magnetopause is compressed below 8 RE, the observed magnetopause is greater than 1 RE inside of the model location on average. The observed magnetopause is also significantly displaced from the model location during storm sudden commencements, when measurements are on average 6% closer to the radiation belts, with a maximum of 42%. We find that the magnetopause is rarely close enough to the outer radiation belt to cause direct magnetopause shadowing, and hence rapid outward radial transport of electrons is also required. We conclude that statistical magnetopause parameterizations may not be appropriate during dynamic compressions. We suggest that statistical models should only be used during quiescent solar wind conditions and supplemented by magnetopause observations wherever possible

    Attentional biases towards familiar and unfamiliar foods in children. The role of food neophobia

    Get PDF
    Familiarity of food stimuli is one factor that has been proposed to explain food preferences and food neophobia in children, with some research suggesting that food neophobia (and familiarity) is at first a predominant of the visual domain. Considering visual attentional biases are a key factor implicated in a majority of fear-related phobias/anxieties, the purpose of this research was to investigate attentional biases to familiar and unfamiliar fruit and vegetables in 8 to 11 year old children with differing levels of food neophobia. To this end, 70 primary aged children completed a visual-probe task measuring attentional biases towards familiar and unfamiliar fruit/vegetables, as well as the food neophobia, general neophobia and willingness to try self-report measures. Results revealed that as an undifferentiated population all children appeared to demonstrate an attentional bias toward the unfamiliar fruit and vegetable stimuli. However, when considering food neophobia, this bias was significantly exaggerated for children self-reporting high food neophobia and negligible for children self-reporting low food neophobia. In addition, willingness to try the food stimuli was inversely correlated with attentional bias toward the unfamiliar fruits/vegetables. Our results demonstrate that visual aspects of food stimuli (e.g. familiarity) play an important role in childhood food neophobia. This study provides the first empirical test of recent theory/models of food neophobia (e.g. Brown & Harris, 2012). Findings are discussed in light of these models and related anxiety models, along with implications concerning the treatment of childhood food neophobia

    Phenotypic Characterization of EIF2AK4 Mutation Carriers in a Large Cohort of Patients Diagnosed Clinically With Pulmonary Arterial Hypertension.

    Get PDF
    BACKGROUND: Pulmonary arterial hypertension (PAH) is a rare disease with an emerging genetic basis. Heterozygous mutations in the gene encoding the bone morphogenetic protein receptor type 2 (BMPR2) are the commonest genetic cause of PAH, whereas biallelic mutations in the eukaryotic translation initiation factor 2 alpha kinase 4 gene (EIF2AK4) are described in pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Here, we determine the frequency of these mutations and define the genotype-phenotype characteristics in a large cohort of patients diagnosed clinically with PAH. METHODS: Whole-genome sequencing was performed on DNA from patients with idiopathic and heritable PAH and with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis recruited to the National Institute of Health Research BioResource-Rare Diseases study. Heterozygous variants in BMPR2 and biallelic EIF2AK4 variants with a minor allele frequency of <1:10 000 in control data sets and predicted to be deleterious (by combined annotation-dependent depletion, PolyPhen-2, and sorting intolerant from tolerant predictions) were identified as potentially causal. Phenotype data from the time of diagnosis were also captured. RESULTS: Eight hundred sixty-four patients with idiopathic or heritable PAH and 16 with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis were recruited. Mutations in BMPR2 were identified in 130 patients (14.8%). Biallelic mutations in EIF2AK4 were identified in 5 patients with a clinical diagnosis of pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Furthermore, 9 patients with a clinical diagnosis of PAH carried biallelic EIF2AK4 mutations. These patients had a reduced transfer coefficient for carbon monoxide (Kco; 33% [interquartile range, 30%-35%] predicted) and younger age at diagnosis (29 years; interquartile range, 23-38 years) and more interlobular septal thickening and mediastinal lymphadenopathy on computed tomography of the chest compared with patients with PAH without EIF2AK4 mutations. However, radiological assessment alone could not accurately identify biallelic EIF2AK4 mutation carriers. Patients with PAH with biallelic EIF2AK4 mutations had a shorter survival. CONCLUSIONS: Biallelic EIF2AK4 mutations are found in patients classified clinically as having idiopathic and heritable PAH. These patients cannot be identified reliably by computed tomography, but a low Kco and a young age at diagnosis suggests the underlying molecular diagnosis. Genetic testing can identify these misclassified patients, allowing appropriate management and early referral for lung transplantation

    Comprehensive Rare Variant Analysis via Whole-Genome Sequencing to Determine the Molecular Pathology of Inherited Retinal Disease

    Get PDF
    Inherited retinal disease is a common cause of visual impairment and represents a highly heterogeneous group of conditions. Here, we present findings from a cohort of 722 individuals with inherited retinal disease, who have had whole-genome sequencing (n = 605), whole-exome sequencing (n = 72), or both (n = 45) performed, as part of the NIHR-BioResource Rare Diseases research study. We identified pathogenic variants (single-nucleotide variants, indels, or structural variants) for 404/722 (56%) individuals. Whole-genome sequencing gives unprecedented power to detect three categories of pathogenic variants in particular: structural variants, variants in GC-rich regions, which have significantly improved coverage compared to whole-exome sequencing, and variants in non-coding regulatory regions. In addition to previously reported pathogenic regulatory variants, we have identified a previously unreported pathogenic intronic variant in CHM\textit{CHM} in two males with choroideremia. We have also identified 19 genes not previously known to be associated with inherited retinal disease, which harbor biallelic predicted protein-truncating variants in unsolved cases. Whole-genome sequencing is an increasingly important comprehensive method with which to investigate the genetic causes of inherited retinal disease.This work was supported by The National Institute for Health Research England (NIHR) for the NIHR BioResource – Rare Diseases project (grant number RG65966). The Moorfields Eye Hospital cohort of patients and clinical and imaging data were ascertained and collected with the support of grants from the National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital, National Health Service Foundation Trust, and UCL Institute of Ophthalmology, Moorfields Eye Hospital Special Trustees, Moorfields Eye Charity, the Foundation Fighting Blindness (USA), and Retinitis Pigmentosa Fighting Blindness. M.M. is a recipient of an FFB Career Development Award. E.M. is supported by UCLH/UCL NIHR Biomedical Research Centre. F.L.R. and D.G. are supported by Cambridge NIHR Biomedical Research Centre
    corecore