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Abstract17

The Super Dual Auroral Radar Network (SuperDARN) was built to study ionospheric18

convection and has in recent years been expanded geographically. Alongside software de-19

velopments, this has resulted in many different versions of the convection maps dataset20

being available. Using data from 2012 to 2018, we produce five different versions of the21

widely used convection maps, using limited backscatter ranges, background models and22

the exclusion/inclusion of data from specific radar groups such as the StormDARN radars.23

This enables us to simulate how much information was missing from older SuperDARN24

research. We study changes in the Heppner-Maynard boundary (HMB), the cross po-25

lar cap potential (CPCP), the number of backscatter echoes (n) and the χ2/n statistic26

which is a measure of the global agreement between the measured and fitted velocities.27

We find that the CPCP is reduced when the PolarDARN radars are introduced, but then28

increases again when the StormDARN radars are added. When the background model29

is changed from the RG96 model, to the most recent TS18 model, the CPCP tends to30

decrease for lower values, but tends to increase for higher values. When comparing to31

geomagnetic indices, we find that there is on average a linear relationship between the32

HMB and the geomagnetic indices, as well as n, which breaks when the HMB is located33

at latitudes below ∼50◦ due to the low observational density. Whilst n is important in34

constraining the maps (maps with n >400 data points are unlikely to differ), it is in-35

sufficient as the sole measure of quality.36

Plain Language Summary37

The ionosphere, where space begins and the atmosphere ends, moves as a result38

of the Earth’s magnetic field coupling with the Sun. The Super Dual Auroral Radar Net-39

work (SuperDARN) was built around the Earth’s magnetic poles to study this phenomenon,40

known as ionospheric convection. Combining many line-of-sight convection measurements,41

we are able to build global maps of ionospheric convection from SuperDARN data. This42

encapsulates dynamics which are central to space weather phenomena. SuperDARN, which43

has been gathering data for decades, has over time undergone numerous transformations,44

including the development of new processing software and more radars being added to45

the network. Using data from the years 2012 to 2018, we perform a statistical analysis46

on processed SuperDARN convection maps for the entire dataset and assess systemat-47

ically how the dataset has changed over the years. We consider how the addition of more48
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data and differences to the convection mapping procedures can affect scientific studies49

in the context of this large database.50

1 Introduction51

The Super Dual Auroral Radar Network (SuperDARN) consists of high-frequency52

coherent scatter radars built to study ionospheric convection by means of Doppler-shifted,53

pulse sequences and has been widely used in space physics and ionospheric research (e.g.54

Greenwald et al., 1995; Ruohoniemi & Greenwald, 1996; Chisham et al., 2007; Nishitani55

et al., 2019). SuperDARN data are continuously available from 1993, with the network56

having expanded over time from one radar (built in 1983) to 23 radars in the Northern57

hemisphere, 13 in the Southern hemisphere and more under construction (Nishitani et58

al., 2019). This expansion has allowed for a greater area to be covered by SuperDARN59

(i.e. down to magnetic latitudes of 40◦) with at least 16 different look directions along60

which each radar can sample different ranges (Nishitani et al., 2019) in the Northern hemi-61

sphere. Line-of-sight measurements by this large-scale network of radars can be combined62

and used to construct a picture of high-latitude ionospheric convection on time scales63

of 1-2 minutes (Ruohoniemi & Baker, 1998). The radars can be grouped into high-latitude64

radars (the original network), polar-latitude radars (or PolarDARN), and mid-latitude65

radars (or StormDARN). Nishitani et al. (2019) provides a summary from a historical66

northern hemisphere perspective: high-latitude radars, at magnetic latitudes of 50-70◦67

were first built, starting in 1983 with the Goose Bay radar, followed by the PolarDARN68

radars (covering 70-90◦ magnetic latitude), and the expansion to mid-latitudes (∼40-50◦),69

starting in 2005 with the Wallops Island radar. Over time new radars have improved global70

ionospheric convection mapping by increasing the number of measurements and look di-71

rections.72

The most commonly used SuperDARN data product by the space science and iono-73

spheric research community is the convection maps. Convection maps are large scale maps,74

showing ionospheric convection around the magnetic poles. In order to produce these75

maps, several data processing steps have to be undertaken. Data from different radars76

are combined, which allows for the exclusion of data from particular radars or the spec-77

ification of a range limit for the scatter. For example, slow moving E-region scatter can78

and should be removed by setting the minimum range gate limit to 800 km (Forsythe79

& Makarevich, 2017; Thomas & Shepherd, 2018). It has become apparent that far range80
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data beyond 2000 km may also be problematic owing to geolocation uncertainties in the81

range finding algorithm (Chisham et al., 2008). Once the data has been chosen and com-82

bined, a fitting algorithm is applied which fits an electrostatic potential in terms of spher-83

ical harmonic functions to the data (Ruohoniemi & Greenwald, 1996; Ruohoniemi & Baker,84

1998). To find the optimal solution for the spherical harmonic coefficients, a singular value85

decomposition (e.g. Press, W. H. and Teukolsky, S. A. and Vetterling W. T. and Flan-86

nery B. P., 2007) is minimised. When this fitting is performed, typically a background87

statistical convection model (hereafter referred to as just the background model), param-88

eterised by a mix of IMF conditions and solar wind velocity depending on the model used,89

to infill information in the case of data gaps. This method is also known as the ‘Map Po-90

tential’ technique. With the expansion of the radar network, as well as data processing91

software improvements, the resulting data product has undergone several changes.92

Several models are available for the ‘Map Potential’ method, most notably Ruohoniemi93

and Greenwald (1996) generated the most widely used background model, which was sub-94

sequently implemented in the RST, the Radar Software Toolkit (e.g. SuperDARN Data95

Analysis Working Group, Thomas, Ponomarenko, Billett, et al., 2018). This background96

model was thus used by most SuperDARN users when generating convection maps and97

used in many scientific studies. Ruohoniemi and Greenwald (1996) used data from the98

Goose Bay radar to derive the background statistical model. Since then however, many99

more radars have been added to SuperDARN. This raises the question of how much of100

an effect changing the background model has on the convection map dataset, which was101

investigated by Shepherd and Ruohoniemi (2000). The main conclusion from Shepherd102

and Ruohoniemi (2000) was that the solution becomes insensitive to the choice of sta-103

tistical model when the data coverage is high. Since then, Ruohoniemi and Greenwald104

(2005) produced an updated version of their background model using data from 9 radars,105

but this was not implemented into RST, thus keeping the RG96-model the default which106

was used by the community. Since then, a number of updated background models, such107

as Pettigrew et al. (2010), Cousins and Shepherd (2010) and Thomas and Shepherd (2018)108

have been produced. The Pettigrew et al. (2010) and Cousins and Shepherd (2010) mod-109

els were not implemented into RST until version 4.1 (SuperDARN Data Analysis Work-110

ing Group, Thomas, Ponomarenko, Bland, et al., 2018). Soon after, the background model111

by Thomas and Shepherd (2018) was released, which is now standard in RST since ver-112

sion 4.2 (SuperDARN Data Analysis Working Group, Thomas, Ponomarenko, Billett,113
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et al., 2018). The RG96 and TS18 models are thus the most widely used and we will fo-114

cus our analysis on these background models.115

In this paper we conduct a large scale data analysis to assess systematically how116

the SuperDARN convection map dataset has changed over the years and how this may117

have affected the derived convection maps.118

We specifically probe the effects of the following changes:119

1. Inclusion of the backscatter range limits120

2. Addition of the PolarDARN data121

3. Addition of the StormDARN data122

4. Updating of the background statistical model123

Comparing different versions of input dataset allows for a large-scale analysis of124

systematic changes and in particular, how the introduction of new StormDARN and Po-125

larDARN data modifies the convection maps on a large scale, which has implications for126

use of the maps in scientific studies.127

In particular, we discuss measures of map quality in the context of these changes,128

as well as the placement of the Heppner-Maynard boundary (the lower latitude convec-129

tive boundary which is used to constrain the maps).130

2 Data and Method131

To provide a meaningful large scale comparison of different versions of the Super-132

DARN dataset, we process Northern hemisphere data to create different versions of the133

SuperDARN convection maps for the same time period (2012-2018).134

To make SuperDARN convection maps we process the raw data using the Radar135

Software Toolkit (RST (SuperDARN Data Analysis Working Group, Thomas, Ponomarenko,136

Bland, et al., 2018)), which can be broken down into 5 steps:137

1. Fitacf files, which include the line-of-sight velocity data, are produced from the138

raw radar data by applying version 2.5 of the FITACF function (SuperDARN Data139

Analysis Working Group et al., 2019).140

2. The data from one hemisphere (in our case, the Northern hemisphere) are then141

gridded onto an equal area latitude-longitude grid (see equation 1 from Ruohoniemi142

–5–



manuscript submitted to JGR: Space Physics

& Baker, 1998) and split into typically one or two minute cadence records. The143

grid we use for this analysis is in the AACGM coordinate system (version 2 by Shep-144

herd, 2014). Historically it has almost always been the case that all ionospheric145

data measured by the radars were added to the grids. As discussed below, we ex-146

plore changing the range limit by setting the minimum range gate limit to 800 km147

and the far range data limit to 2000 km.148

3. A Heppner-Maynard boundary (HMB) (Heppner & Maynard, 1987), the low-latitude149

boundary of the convection pattern where the flows approach zero, can either be150

specified or be chosen using backscatter measurements. This is to constrain the151

convection pattern when the spherical harmonic fit is applied (Shepherd & Ruo-152

honiemi, 2000). For typical two minute cadence convection maps, it is appropri-153

ate to find the lowest latitude where three radar velocity measurements are greater154

than 100 ms−1 to define the HMB (Imber et al., 2013). This boundary is circu-155

lar around the nightside and oval-shaped on the dayside, such that it moves to higher156

latitudes. Previous to Shepherd and Ruohoniemi (2000), a fully circular bound-157

ary was used, which was deemed to create unrealistic flows at lower latitudes when158

the radar network was expanded. To make all the convection maps (D0 to D4),159

using RST, the HMB (Heppner & Maynard, 1987; Shepherd & Ruohoniemi, 2000)160

was chosen using the default method using the functional form Shepherd and Ruo-161

honiemi (2000), using the thresholds above.162

4. A background model is selected based on solar wind conditions and model vec-163

tors are added to the grid. For this, we use solar wind data from the ACE space-164

craft, which has been time-lagged to the magnetosphere using the algorithm from165

Khan and Cowley (1999) which takes magnetosheath transit time into account.166

We add the model, specifying a fitting order of 6 with a ‘light’ doping level for the167

background convection model, which means a minimum reliance is placed on the168

background model. Newer background models (Thomas & Shepherd, 2018; Pet-169

tigrew et al., 2010; Cousins & Shepherd, 2010) are all generated using a fitting or-170

der of 8, whereas Ruohoniemi and Greenwald (1996) was generated using a sixth171

order fit.172

5. Finally, the ‘Map Potential’ technique is applied. We use the technique from Ruohoniemi173

and Baker (1998) to fit electrostatic potentials to the combined measured and model174

velocity vectors as spherical harmonic functions.175
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Using the steps outlined above, we first create the dataset (D0) with the high-latitude176

radars only, which is then modified by changing one aspect for each subsequent dataset.177

This allows us to contrast the impact of each change in the dataset. The basic data pro-178

cessing is the same for all the datasets, except for the differences outlined in Table 1. The179

specific processing commands and options used for the data processing can be found in180

the appendix of this paper.181

Two versions of the gridded map files were created (e.g. step 2 to 5 is repeated)182

to see how changing the backscatter range limits affects the dataset. One version of the183

gridded files was created with added backscatter range limits and one without any range184

limit. By only including data from a minimum range of 800 km and a maximum far range185

of 2000 km, we try to eliminate all possible E-Region scatter and all backscatter with186

higher uncertainties in range and azimuth (i.e. projected location) (Chisham et al., 2008;187

Forsythe & Makarevich, 2017; Thomas & Shepherd, 2018). On a statistical level, we ex-188

pect this method to remove most of the data with higher uncertainty, but this method189

will also remove some good quality data as a substantial amount of scatter comes from190

ranges greater than 2000 km. Applying these range limits may not remove all E-region191

scatter or all scatter with uncertain locations, but currently no better method for a large192

statistical dataset exists. The version of gridded files with backscatter range limits is used193

for D1-D4 and the one without a range limit is used for D0. The gridded map files were194

resolved into two minute records and used the Chisham virtual height model (Chisham195

et al., 2008).196

Dataset versions D0 and D1 include the same radars, whereas for D2 and D3, more197

radars were included (see Table 1). For the selection of PolarDARN and StormDARN198

groupings the list provided by Table 1 in Thomas and Shepherd (2018) was used. The199

list provided in Thomas and Shepherd (2018) demonstrates that most of the StormDARN200

radars were built after the high-latitude and PolarDARN radars.201

For D4, we keep the selection of radars the same as D3, but use the background202

model from Thomas and Shepherd (2018) (TS18) instead of the one from Ruohoniemi203

and Greenwald (1996) (RG96).204

Having established this archive of 2-minute resolution convection map files, we then205

extract a set of measured parameters with which to quantify the ionospheric convection.206

The HMB latitude and cross polar cap potential (CPCP) describe the spatial extent and207
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strength of the convection and allow us to examine how changes in the processing might208

affect conclusions of scientific studies, whereas the number of backscatter echoes per map209

or the average number of backscatter points per radar allows us to study how changes210

affect coverage. In this study, we define the HMB latitude as the latitude of the fitted211

boundary on the nightside and we also investigate how this parameter changes along-212

side the minimum latitude where backscatter is obtained (Λmin), which can be along any213

magnetic local time or longitude. We would thus expect the difference between the two214

parameters to be positive for well constrained maps (i.e. Λmin is at a lower latitude than215

the HMB), but to be negative when either the minimum latitude of observations is on216

the dayside (where the HMB shifts to higher latitudes) or an indicator that the HMB217

is not constrained by data. We also show how the different processing affects the χ2/n-218

statistic, which is often used as a global measure of map quality.219

The χ2 parameter is a result from the singular value decomposition, which is min-220

imised when the spherical harmonic fitting is performed to find the optimal solution for221

the coefficients. Ruohoniemi and Baker (1998) define this as222

χ2 =

N∑
i=1

1

σ2
i

[V[i] · k̂[i]−Wi]
2, (1)223

where V[i] is the fitted velocity vector at the grid cell position i, σ2
i is standard devi-224

ation of the fitted velocity vector at i, k̂[i] is the direction of the velocity vector, Wi are225

the uncertainties associated line-of-sight velocity uncertainties and the dot product thus226

provides the projection of the velocity onto the line-of-sight direction. χ2/n was intro-227

duced by Ruohoniemi and Baker (1998) as a measure of the goodness of fit of the spher-228

ical harmonic expansion to the measured line-of-sight velocity data, where a value of 1229

would indicate a good match and higher values would indicate a worse match. In this230

study we explore how this parameter varies and we discuss if it is an adequate measure231

of map quality. We discuss why χ2/n might change and what these changes might mean232

for the quality of the convection maps.233

Additionally, we also discuss the relationship between the HMB latitude and mea-234

sures of geomagnetic activity, such as the Auroral Lower index (AL), the Auroral Elec-235

trojet index (AE) and the Symmetric Horizontal index (Sym-H) (Davis & Sugiura, 1966;236

Iyemori, 1990). These are derived from ground-based magnetometer measurements and237

are a proxy for the magnetospheric activity in response to the dayside driving and in-238
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ternal dynamics (Davis & Sugiura, 1966; World Data Center for Geomagnetism in Ky-239

oto et al., 2015). We also consider the relationship between the CPCP and ΦD, the day-240

side reconnection rate, which is calculated from the IMF BY Z component, the solar wind241

speed, VX , and IMF clock angle, θ, (Milan et al., 2012; Walach et al., 2017):242

ΦD = 3.3× 105V 4/3
x BY Z sin9/2 1

2
θ (2)243

We compare these parameters from D0 to D3 with D4, the most modern set-up,244

which we use as our control dataset. We compare D0 and D4 to see how the lack of a245

range limit, PolarDARN, StormDARN and an updated background model affects the246

convection maps. We compare D1 to D4 to see how the lack of PolarDARN, StormDARN247

and an updated background model affects the convection maps, and a D2 to D4 com-248

parison allows us to investigate the lack of StormDARN and an updated background model249

affects the convection maps. Finally, a comparison between D3 to D4 allows us to see250

the effects on the convection maps of changing the background model only. Overall, this251

allows us to see which changes take us closer to the control dataset, D4. The timeseries252

data extracted from the SuperDARN convection maps is condensed into probability dis-253

tribution functions (PDF) for each parameter. Our approach allows us to further inves-254

tigate how changing one parameter affects the convection maps (e.g. comparing the PDF255

of D1 and D4 to the PDF of D0 and D4 of the same parameter shows how adding range256

limits affects the dataset). In section 3.5 we also explore by how much the fitted Super-257

DARN velocities can increase after adding StormDARN. In the following section, we show258

the PDFs, which enable us to compare the effects of changing the dataset on each pa-259

rameter in turn. A selection of example convection maps, that illustrates some of the dif-260

ferences that result from changing the datasets, are shown in the Supporting Informa-261

tion (Figure S1).262

3 Results263

This section shows the probability distribution functions for the parameters dis-264

cussed above. We compare the results from each dataset with the control dataset (D4)265

and discuss the parameters in turn.266
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Table 1. Differences between the comparison datasets

Version Introduced difference Background

model

high-

latitude

radars

range

limits

PolarDARN

radars

StormDARN

radars

D0 High-latitude radarsa

only

RG96 yes no no no

D1 Added range limits:

800-2000 km

RG96 yes yes no no

D2 Added PolarDARN

radarsb

RG96 yes yes yes no

D3 Added all other (i.e.

StormDARN radars)c

RG96 yes yes yes yes

D4:

Con-

trol

set

Changed the back-

ground model

TS18 yes yes yes yes

a High-latitude radars: King Salmon, Kodiak, Prince George, Saskatoon, Kapuskasing,

Goose Bay, Stokkseyri, Pykkvibaer, Hankasalmi.

bPolarDARN radars include: Inuvik, Rankin Inlet, Clyde River, Longyearbyen.

cStormDARN radars include: Hokkaido West, Hokkaido East, Adak West, Adak East, Christmas Valley West,

Christmas Valley East, Fort Hays West, Fort Hays East, Blackstone, Wallops Island.
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3.1 The Heppner-Maynard Boundary267

Figure 1 shows the probability distribution functions comparing the HMB latitude268

between models with the difference between the HMB latitude and Λmin. The occur-269

rences of the example maps in Fig. S1 are indicated in the probability distribution func-270

tions by the light blue crosses (and green square for comparison of Fig. S1 g and h).271

Fig. 1a shows the comparison between D0 and D4. Whilst for a large proportion272

of the data (38%) the HMB does not differ (±1◦), 44% of the data lie above the line of273

unity. For these instances the HMB is placed at a higher latitude in D4 than in D0. This274

is mostly prominent when the HMB for D0 is above latitudes of 59◦ (40% of the time).275

This could be due to a number of reasons, which we will discuss in section 4. We also276

see a saturation of points in D0 at a HMB latitude of 60◦, which is where the bound-277

ary is drawn if not enough data is available (due to low data coverage or no slow scat-278

ter being observed). The RG96 model has two boundaries where the HMB can be drawn279

when not enough data is available: 60◦ and 55◦, whereas TS18 interpolates between back-280

ground model solutions, so there are less discrete groupings in the HMB locations. Fig.281

1b shows the HMB latitude comparison between D1 and D4. Adding range limits brings282

the HMB distribution closer to the D4 dataset, but the saturation at 60◦ remains, which283

means the HMB is most likely relying on the background fitting. This could be due to284

a lack of StormDARN data. Now including the PolarDARN data, Fig. 1c shows the D2285

dataset once more moving closer to the D4 dataset: The HMB moves to higher latitudes286

in D2 for 27% of the time. The HMB moves to higher latitudes in D2 if it cannot be de-287

fined by data in D1. For the majority of maps however (72%), the HMB does not dif-288

fer at all when adding PolarDARN data. For D3 and D4, the HMB values are largely289

the same as the raw input data do not differ, except for times when the HMB cannot290

be defined. For brevity, we have chosen not to show this plot, as these cases are extremely291

rare (3% of cases). For D4, these cases will be defined by the background model and vary292

smoothly due to the interpolation in the background model between distinct bins, whereas293

for D3 (due to the parametrization in RG96), they will be defined as two distinct lat-294

itudes, as defined by the model: 60◦ (96% of instances) and 55◦ (4% of instances), where295

the 60◦ is the default and 55◦ is defined for strong, southward IMF (6 nT<| B |<12 nT;296

90◦ < clock angle < 270◦).297
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Figure 1. Probability distribution functions comparing the HMB latitude for (a) D0; (b) D1;

(c) D2 with D4; and the difference between the HMB latitude and Λmin for (d) D0; (e) D1; (f)

D2 with D4. The occurrences of the example maps in Fig. 1 are indicated in the PDFs by blue

crosses and green square.

Fig. 1d shows the difference between the HMB latitude and Λmin for D0 against298

D4. This difference is mostly positive for both D0 and D4, which means that the HMB299

sits poleward of Λmin and is thus well constrained. Fig. 1e shows the same parameter,300

but comparing D1 and D4. Having added range limits, more data is in the top left quad-301

rant of the plot than previously, where D1 is negative and D4 is positive. For these data,302

introducing range limits means the HMB is not well-defined in D1, but it is remedied303

in D4. Fig. 1f shows the same parameter, but comparing D2 and D4. Adding the Po-304

larDARN data moves a considerable proportion of these data with negative HMB-Λmin305

and more datapoints cluster around 0, meaning that for these maps, the fitting is likely306

to be better constrained. It is worth noting however that even when this parameter is307

at 0, the HMB is not necessary bounded due to no observations being available equa-308

torward.309
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3.2 Number of Backscatter echoes310

Figure 2 shows probability distribution functions for n, the number of backscat-311

ter echoes and the average n per radar.312

Fig. 2a shows n for D0 versus D4. Going from D0 to D4, the number of backscat-313

ter points largely increase (67% of the time), though sometimes n decreases (32% of the314

time), which means the introduction of range limits reduces n by more than the com-315

bined addition of Polar and StormDARN increase it by. Introducing range limits (see316

Fig. 2b), means that for all instances, n is either higher or the same in D4 as in D1 and317

the same is true for D2, after the PolarDARN data have been added (see Fig. 2c).318

Fig. 2d shows that the number of backscatter points per radar is on average higher319

for D0 than D4. After introducing range limits, however (Fig. 2e), this is true for a slightly320

smaller proportion of the data. After adding the PolarDARN data (Fig. 2f), we see that321

despite a large proportion of the data still lying below the line of unity, the gradient of322

the relationship has increased which means that the number of backscatter echoes per323

radar is higher for the StormDARN than the PolarDARN. By comparing Fig. 2d to e324

and f, we find that number of backscatter echoes per radar is lower for PolarDARN than325

the older radars in the network (D0 and D1).326

3.3 CPCP and χ2/n327

Figure 3 shows a comparison between the different datasets and D4 for the CPCP328

(a to d) and χ2/n (e to h). We immediately see that the CPCP varies little on average.329

Fig. 3a shows that the observed CPCP is on average smaller for D4 than D0 (54% of the330

time), but can increase or decrease from D0 to D4. When the CPCP increases (going331

from D0 to D4), it increases by more on average (8 kV median increase; 10 mean increase;332

92 kV maximum increase; 8 kV standard deviation of the increase) than the average de-333

crease (7 kV median decrease; 8 kV mean decrease; 98 kV maximum decrease; 5 kV stan-334

dard deviation of the decrease). The increases happen however less frequently than the335

decreases (46% of the time, compared to the 54% of the time). We see vertical striations336

in the data in Fig. 3a, which is due to the CPCP being discretely quantized by the RG96337

model bins when the model influence is strong, whereas for TS18 interpolation between338

model bins occurs. Fig. 3b shows the CPCP distribution for D4 and D1. Not much varies339

after introducing range limits, but we find that the striations are more pronounced. Com-340

–13–



manuscript submitted to JGR: Space Physics

Figure 2. Probability distribution functions comparing the number of backscatter echoes for

(a) D0; (b) D1; (c) D2 with D4; and the average backscatter echoes per radar for (d) D0; (e) D1;

(f) D2 with D4. The occurrences of the example maps in Fig. S1 are indicated in the PDFs by

blue crosses and green square.
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paring D1 and D4 and looking at the vertical spread, it is possible for the CPCP to in-341

crease by more than 30 kV, though the majority of data lies below the unity line and342

is likely to decrease by less than ∼30 kV. Adding in the PolarDARN data (Fig. 3c) moves343

the D2 CPCP closer to the D4 CPCP, but there is still some spread. We see less of the344

vertical striations in the CPCP for D2 than previously, which means the background model345

has reduced influence. Fig. 3d shows the CPCP comparison between D3 and D4. After346

adding StormDARN data, there is little variation in the distribution in comparison to347

Fig. 3c. At the lower range (0-∼50 kV), the CPCP is likely to decrease as we change the348

background model from RG96 to TS18 (this occurs 42% of the time as opposed to the349

increase which occurs 29% of the time). For the higher range (>50 kV) however, the CPCP350

is likely to increase when we change model from RG96 (D3) to TS18 (D4) (this occurs351

16% of the time as opposed to the decrease which is 13%). Overall, TS18 thus provides352

a lower CPCP 55% of the time and a higher CPCP 45% of the time for the same data.353

The majority of data lies below the unity line and is likely to decrease by less than ∼30354

kV.355

Fig. 3e shows χ2/n for D0 and D4. Most of the distribution lies between 1 and 10356

for both datasets. We find that for the times when χ2/n is larger in D4 than D0, n for357

D4 tends to small numbers (<200; 102 median; 123.13 mean). Fig. 3f shows the same358

distribution, but for D1 and D4. Changing the data from D0 to D1, the split between359

increases and decreases is approximately equal (45% of χ2/n increasing and 50% of χ2/n360

decreasing). Adding the PolarDARN data (Fig. 3g), shows a slightly slimmer distribu-361

tion in the y-direction, meaning that the parameter in D2 has moved closer to D4. The362

distribution moves yet closer to D4, after we add the StormDARN data (Fig. 3h). Al-363

though not immediately obvious, 64% of the data lie below the line of unity (in compar-364

ison to 36% of data above the line) in Fig. 3h, meaning the fitting error is on average365

reduced when making the convection maps using TS18 in comparison to RG96.366

3.4 Differences in Velocity after Adding StormDARN367

Computing the velocities for D3 at the HMB latitude location in D2 can be used368

as an indicator of how much the map has changed at specific locations and gives us an369

idea of how quantitatively different the convection maps might be without the Storm-370

DARN radars. Choosing the HMB allows us to see the maximum expected variation.371

We explore this in more detail now.372
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Figure 3. Probability distribution functions comparing the CPCP for (a) D0; (b) D1; (c)

D2 ;(d) D3 with D4; and the χ2/n distribution for (e) D0; (f) D1; (g) D2 ;(h) D3 with D4. The

occurrences of the example maps in Fig. S1 are indicated in the PDFs by blue crosses and green

square.
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Figure 4. Probability distribution function of the velocity for D3, extracted at the noon,

dusk, midnight and dawn locations where D2 would have had the HMB. Dashed lines show the

medians for each distribution. Shaded regions indicate the boundaries of the lower and upper

quartiles (25% and 75%).

Figure 4 shows the velocities, extracted from the D3 convection maps for the lo-373

cations where the D2-HMB intersects with the noon, dusk, midnight and dawn merid-374

ians. After adding the StormDARN data, the maps differ considerably at the locations375

where the HMB would have otherwise stipulated that there be zero flow. The histograms376

show that at dawn, the effect is the least noticeable and that there is a 1 in 2 chance that377

the velocity measured in D3 has increased by 120 m/s or less, whereas this increases to378

190 m/s for midnight and 220 m/s and 230 m/s for noon and dusk, respectively. In 8%379

of cases (which equates to over 22000 maps), adding StormDARN increases the D2-zero380

flow regions at midnight to > 400 m/s at midnight, which indicates a considerable dif-381

ference to the convection pattern.382
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Figure 5. Probability distribution functions comparing D3 and D4 datasets: (a) CPCP dif-

ference versus n, (b) n versus D4 HMB, (c) Sym-H versus D4 HMB. The black dashed line show

the line at 0 and the yellow crosses show the median for the associated bins and the error bars

represent the upper and lower quartiles of the distributions (75% and 25%).

3.5 Number of Backscatter Points in Context383

We have already shown most of the differences which happen to the derived con-384

vection maps when changing the background model. Figure 5 shows further data on how385

changing n in D3 and D4 relates to parameters of interest (e.g. CPCP variation, HMB386

and Sym-H).387

Figure 5a shows the CPCP difference against n. We find that the CPCP shows the388

least variability for maps with a high number of backscatter points, which means that389

there is a model dependency which decreases as n increases. For example, at n=200, the390

median and standard deviation are 0.87 kV and 8.88 kV, whereas at n=400, the median391

and standard deviation are 0.04 kV and 6.50 kV, respectively. The yellow crosses and392

error bars (which are indicative of the median and upper or lower quartiles) illustrate393

further that the distribution is narrowing as n increases. While using the TS18 model394

tends to result in a lower CPCP for less constrained maps, it can also overall result in395

a significantly larger CPCP than with RG96 Fig. 5b shows the D4 HMB latitude against396

n. It shows that the HMB is likely to move closer to the equator as the number of backscat-397

ter echoes increases. This is again illustrated by the yellow crosses and error bars. Fig.398

5c shows the HMB latitude against Sym-H. There is a dependence in the HMB moving399

to lower latitudes as Sym-H becomes more negative. Panels b and c show a seemingly400

linear trend with HMB, which seems to break at low latitudes, but this is not supported401

by the yellow crosses, which show the medians for each bin.402
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3.6 Changes to Convection Mapping Since the Original Auroral Radars403

Since the SuperDARN radar network was first built, new additions to the network404

have resulted in differences to the convection map dataset. In this section we compare405

D0 and D4 further to see this historical comparison in context. Figure 6 shows further406

distributions comparing D0 and D4 in the context of geomagnetic activity. Fig. 6a shows407

the differences in the CPCP between D4 and D0 against the dayside reconnection rate,408

ΦD. The differences in the CPCP tend to be smaller for high solar wind driving (high409

ΦD). Similarly, Fig. 6b shows the differences in the HMB against AE and Fig. 6c shows410

the estimates in the HMB against AL. Panels b and c show that differences in the HMB411

tend to be smaller when the auroral electrojet indices, AE and AL are enhanced. Figs.412

6d and e show the D0 and D4 HMB against AL. These include yellow and blue crosses413

which represent the median fits for each AL bin with the error bars showing the lower414

(25%) and upper (75%) quartiles of the distributions, allowing us to compare D4 (yel-415

low) with D0 (blue). This shows very clearly that when we use D0, we are less likely to416

observe a low HMB at enhanced (low) AL, which is not to mean that these occurrences417

do not exist, but simply that the SuperDARN fitting with the original dataset means418

we are less likely to observe them. In Figs. 6f and g, we provide a similar comparison for419

the D4 and D0 CPCP with respect to ΦD. Here, we use the vertical bins to calculate420

the upper and lower quartiles and the medians. We show error bars for every fifth bin421

only due to the point density. This comparison shows that for D4 we are more likely to422

observe a higher CPCP at higher values of ΦD than for D0. In fact, at a ΦD of 100 kV,423

the median CPCP for D4 is at ∼75 kV and ∼ 65 kV for D0. The median curve has a424

different shape for the two datasets: The bulk of the distribution is at low values of so-425

lar wind driving where the median values are very similar but at higher values, the dis-426

tributions differ. Both have a logarithmic shape to them and neither appear like a lin-427

ear fit would suffice to describe the trend in the dataset. Finally in panel h, we show the428

ratio between the CPCP normalised by ΦD for both datasets. This shows that the ra-429

tio between the two versions of the CPCP and dayside driving are proportional to each430

other. It also shows that these ratios increase logarithmically and that the CPCP dif-431

ferences with respect to ΦD in D0 are likely to be similar to D4.432
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Figure 6. Probability distribution functions comparing the entire D0 and D4 datasets: (a)

ΦD versus the CPCP difference, (b) AE versus HMB difference, (c) AL versus HMB difference,

(d)AL versus D0 HMB and (e) D4 HMB, (f) D0 CPCP versus ΦD, (g) D4 CPCP versus ΦD

and (h) CPCP normalised by ΦD. The crosses show the median in the x- or y-direction for each

y- or x-bin (where applicable) with the yellow showing the fit for D4 and blue showing the fit

for D0. Error bars represent the lower and upper quartiles of the distributions (25% and 75%,

respectively). Black dashed lines either show the lines of unity or the line at 0.
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3.7 Identification of Minimum Map Reliability433

When using SuperDARN maps in research, a frequent question is “How reliable434

is this map?” and often n is used to answer this question. If n is high, the maps are of-435

ten deemed more reliable, but is there a universal limit for n, which can be used to se-436

lect reliable convection maps?437

To attempt to answer this question statistically, we present in Figure 7a the PDF438

of the ratio of χ2/n between D4 and D0 on a logarithmic scale against the difference in439

n. It shows that as the map fitting becomes more constrained (i.e. the ratio of D4 and440

D0 χ2/n comes closer to 1), the difference in n is likely to becomes smaller. As the ra-441

tio of χ2/n becomes larger, the difference in n in also very small. This means that an442

increase in n does not necessarily translate to an improved map. In fact, the width of443

the distribution peaks in the y-direction (and differences in n are more likely to happen)444

for maps that are not already well constrained. Fig. 7a shows that maps where χ2/n does445

not differ much (i.e. ratio close to 1), the differences in n are also very small, but can446

also be large. Figure 7b and c show the ratio of the two χ2/n on a logarithmic scale ver-447

sus n in D4 and n in D0. There is a trend for χ2/n ratio moving away from 1 as n de-448

crease. In both D4 and D0, there is no clear uniform break-point in n, where χ2/n ra-449

tio becomes smaller and the maps are better constrained in D4 than D0. We also find450

that as n increases, χ2/n is likely to be smaller for D4 than D0, however there is less spread451

and the peak is more pronounced for D0 than D4. We also note that the tail in the dis-452

tributions of D4 n and D0 n versus the ratio in χ2/n are not symmetrical around 0. We453

will discuss these results further in the discussion section.454

4 Discussion455

4.1 Effect of Changing Range Limits on Derived Convection Maps456

Adding range limits is intended to remove E-region scatter (i.e. scatter which moves457

slower than F-Region scatter), which can be assessed by direct comparison between D0-458

D4 and D1-D4. If we consider a simple situation where adding a range limit removes scat-459

ter moving slower than the F-region ExB velocity, then this should increase overall con-460

vection in the maps and thus the CPCP should increase. However, the blanket removal461

approach means that the removed scatter can also be faster than the average F-region462

flows, which can lead to counter-intuitive results. This will be discussed in further de-463
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Figure 7. Probability distribution functions comparing the D0 and D4 datasets: The ratios

of χ2/n on a logarithmic scale versus (a) the differences in n, (b) D4 n and (c) D0 n. The black

dashed line show the line at 0 (horizontal lines) or 1 (vertical lines).

tail later in this section. The applied range limits also remove far-range scatter from slant464

range > 2000 km, which avoids potential errors in geolocation of LOS measurements at465

far range gates. Whilst this seems like it should constrain the spherical harmonic solu-466

tion, Thomas and Shepherd (2018) have shown that the opposite is true for a dataset467

that is limited in latitudinal coverage: Figure 11 in Thomas and Shepherd (2018) shows468

how range limits impacts the data coverage afforded by the high-, polar-, and mid-latitude469

radars. For example, when data from beyond 2000 km slant range are removed from the470

high-latitude radar dataset, which is comparable to our D0 to D1 variation, then the so-471

lution poleward of ∼76◦ magnetic latitude is purely reliant on the statistical model be-472

cause no measurements are possible. This is to be expected and will be the same for our473

D0 to D1 comparison. Imposing the range-limit will also reduce the number of backscat-474

ter echoes in the maps but we also see that the number of backscatter echoes are not solely475

responsible for map quality.476

Chisham and Pinnock (2002) conclude that the contamination from non-F-region477

scatter does not usually have a large impact on the global characteristics of the Super-478

DARN convection maps. However, they did show that it has a significant effect on mesoscale479

features in the convection maps. Our study supports these findings in terms of the larger480

scale characteristics. We find that for the analysed time period, the CPCP is > 10% dif-481

ferent 5% of the time and the CPCP is < 10% different 95% of the time. Whilst less than482

5% seems like a small set of observations, this does comprise more than 80000 maps, so483

it may be important on a case-study basis.484
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Chisham and Pinnock (2002) further showed that removing E-region scatter may485

not always result in more accurate convection maps. Whilst most E-region scatter is be-486

lieved to move slower than F-region scatter, this may not always be the case: Forsythe487

and Makarevich (2017) used SuperDARN data from the Southern hemisphere and showed488

that E-Region scatter can be of a similar order of magnitude as F-Region scatter (∼200489

m/s or larger). They also showed however that whilst F-Region scatter tends to have490

a Gaussian velocity profile, the E-Region velocity distribution is highly asymmetric, ow-491

ing to the Farley-Buneman and gradient drift instabilities being the main drivers. This492

may be the reason why Chisham and Pinnock (2002) find that removing E-region scat-493

ter does not always improve convection maps, but the study by Forsythe and Makare-494

vich (2017) provides clear evidence why removing this scatter makes scientific sense. Our495

method of adding range limits follows the strategy of Thomas and Shepherd (2018), though496

they used this method for statistical convection maps and this may not always be prac-497

tical for instantaneous convection maps. Whilst the method employed here to remove498

far range backscatter is a broad-brush approach and also removes valid data, future al-499

ternatives could include the use of either calibrated elevation angles (which involves mea-500

suring the elevation angles using interferometry) or a more accurate virtual height model.501

We have to consider the possibility that removing the far-range scatter reduces the502

integrity of the maps: The uncertainty in the geolocation of far-range scatter is expected503

to be of the order of ∼100 to 200 km when using the Chisham virtual height model, which504

approximately equates to between one to two grid cells. Given that for an order 6 SHA505

fit the spatial resolution of the maps is relatively low, this level of spatial uncertainty is506

small.507

To reduce measurement uncertainty, we remove both potential E-region scatter and508

scatter from far range gates. We find that by introducing range limits, the normalised509

Chi-squared distribution of the map fitting procedure, χ2/n is increased 74% of the time510

and decreased 26% of the time.511

Sometimes, reducing the number of backscatter points by introducing range lim-512

its will increase the HMB to higher latitudes due to removing lower-latitude scatter but513

more importantly, this difference will reduce E-region scatter at lower-latitudes and thus514

reduce the probability of choosing a HMB at a low latitude. For the subset of observa-515

tions where this is most likely the case (i.e. the difference between the HMB and Λmin516
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are greater in D0 than in D1 and the HMB is at a lower latitude in D0 than in D1), the517

median n is higher (D0: 128 and D1: 56) than the median for the entire dataset (D0:518

93 and D1: 40). Other portions of the dataset which may indicate a worse fitting con-519

tain the population where χ2/n increases: here, the median n is less (D0: 86 and D1:520

38) than the medians for the entire dataset (D0: 93 and D1: 40). Both these statistics521

suggest, that n is not a good predictor for how good the fit is once range limits have been522

introduced if χ2/n is used as a quality-of-fit indicator. Alternatively, we suggest that this523

illustrates a problem with χ2/n and that it may not be the perfect indicator for qual-524

ity. We propose that in the future, a better measure for map quality is sought. Further525

work is required to decide what this may be and is also necessary to evaluate which range526

limits would be the best choice for creating convection maps.527

4.2 Effect of PolarDARN Radars on Derived Convection Maps528

Adding PolarDARN to the dataset increases the coverage, so we would expect the529

CPCP to be better constrained and n to increase.530

We find that adding the PolarDARN radars decreases the CPCP on average, which531

could indicate that the CPCP is overestimated without good polar cap coverage or that532

adding PolarDARN causes an underestimation. The latter has also been shown by Mori533

et al. (2012), who compared the velocity measurements from PolarDARN radars to CADI534

ionosonde measurements, as well as comparing the CPCP. Adding range limits to our535

processing will remove any slow-moving E-Region scatter, which may increase the CPCP.536

Without polar cap measurements, it is more likely that the CPCP is estimated inaccu-537

rately, which is illustrated by the example maps in Fig. S1 (c and d).538

We also find that the difference between the HMB and Λmin either stays the same539

or tends to increase when the polar radars are added to the dataset. Whilst we would540

expect PolarDARN measurements mostly to be poleward of the observations from the541

original high-latitude radars (particularly after introducing range limits), this does not542

seem to be the case, which is most likely due to the limited local time observations in543

the original (D0) maps. We also find that the HMB tends to stay the same or move pole-544

ward when adding the polar radars. This indicates that for a number of maps, the HMB545

was not well defined as we would not expect the introduction of PolarDARN data to move546

the HMB at all. Whilst this indicates that the HMB was not always necessarily well con-547
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strained prior to the introduction of the PolarDARN data, it also indicates that obser-548

vations near the pole are important when producing the maps.549

Adding the PolarDARN radars to the dataset can increase or decrease χ2/n. This550

parameter only tends to increase for D2 if it was low for D1 and tends to decrease for551

D2 if it is also high for D1. This suggests that the maps where the fitting is not partic-552

ularly good for D1, improve when adding PolarDARN data, but there are also a num-553

ber of maps where this fitting parameter decreases. Overall however, we find that the554

difference between the HMB and Λmin has a tendency to increase, which means the HMB555

is constrained by data at a lower latitude. The median n increases from 40 to 108 when556

adding the PolarDARN radars, which is a considerable increase in scatter.557

4.3 Effect of StormDARN on Derived Convection Maps558

Adding StormDARN radars improves the coverage of data at lower latitudes, we559

expect the HMB to move equatorward and the CPCP to be better estimated.560

We find that the StormDARN radars add less data to the maps (on average), than561

the polar or high latitude radars, but nevertheless, adding their data to the maps gen-562

erally improves the map quality. χ2/n almost always decreases and the HMB tends to563

be better estimated. Adding StormDARN data tends to add low velocity scatter in lower564

turbulence regions, which better constrains the spherical harmonic expansion and lead-565

ing to the decrease in χ2/n.566

Thomas and Shepherd (2018) made a new background model and showed that in-567

troducing the StormDARN radars could increase the CPCP by as much as 40% (for the568

most strongly southward IMF conditions) due to the high-latitude radars only being able569

to image a proportion of the convection zone necessary to estimate the CPCP. It is worth570

noting that Thomas and Shepherd (2018) found very little difference in the CPCP for571

weak to moderate solar wind driving because the low-latitude convection boundary re-572

mained within the FOV of the high-latitude radars. We find that, without using the TS18573

model, but by simply including the StormDARN radars, the CPCP does indeed increase574

more often (12% of times) than decrease (8% of times) but the maximum difference seen575

is a 45% decrease when the CPCP varies from 34.70 kV in D2 to 19.19 kV in D3.576
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By investigating the D3 velocity measured at the HMB location of D2, we find that577

for 33% of cases the velocity variation is less than 200 m/s, but for a considerable num-578

ber of maps (8%, which equates to over 22000 maps), the velocity variation is > 400 m/s579

at midnight, which indicates a considerable variation to the convection pattern. This means580

that without the StormDARN radars, the velocities at ΛHMB2 could have an uncertainty581

of more than 190 m/s over half the time at midnight, which is considerable, assuming582

the HMB placement is constrained by data.583

However, we have to consider the possibility that the HMB placing is not always584

as good as we would like: Many convection maps from the post-StormDARN era (such585

as the map shown in Fig. S1h, for example) show large amounts of low velocity mid-latitude586

convection in the nightside ionosphere, which does not seem to improve the convection587

map. We postulate that these streams are associated with magnetic flux frozen into the588

plasmasphere (the inner part of the magnetosphere located just above the ionosphere)589

(Ribeiro et al., 2012). As the plasmasphere corotates with Earth, radars should not mea-590

sure Doppler velocities associated with the rotation due to their fixed geographic loca-591

tion. However, if this co-rotation is not perfectly in sync with Earth’s rotation then it592

may be possible to measure low Doppler velocities (tens-hundreds of ms−1). While more593

transient in nature, over- or under-shielding scenarios may also lead to uncertainties in594

the HMB latitude determination when including the StormDARN radar data (e.g. Nishida,595

1968; Nishitani et al., 2019): When this happens, the electric field formed at the inner596

edge of the plasma sheet and associated with the region 2 field-aligned currents coun-597

teracts the effects of the solar wind-driven magnetospheric convection at sub-auroral lat-598

itudes. Whilst these scenarios may lead to uncertainty of the HMB placement, they are599

understood to be exceptional circumstances and not well enough understood to be ex-600

plicitly taken into account when determining the HMB (Nishitani et al., 2019). Further-601

more, it is important to keep in mind that the HMB is a boundary condition, introduced602

to facilitate the fitting process and may in reality be different to our simplified circular603

shape.604

4.4 Effect of Changing the Background Model on Derived Convection605

Maps606

When changing the background model from RG96 to TS18 we might expect a more607

realistic fit due to a background model parametrization with more variables. The TS18608
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model not only uses the IMF magnetic field strength and direction, but this model parametriza-609

tion also includes the solar wind’s electric field and the Earth’s dipole tilt, which results610

in 120 model bins that are trilinearly interpolated between to achieve smoother transi-611

tions, as opposed to the rigid 24 model bins chosen by RG96. The χ2/n distribution in-612

dicates that sometimes this expected improvement is the case, however sometimes the613

fitting is worse (i.e. χ2/n increases), which is primarily the case for low n maps. Over-614

all, we find (in Fig. 3 and 5) that the largest differences in the CPCP are produced when615

the CPCP was already high in D3 and these tend to occur when n is low. In fact, a higher616

n, means smaller likelihood of observing a difference in CPCP. Thomas and Shepherd617

(2018) compared the statistical averages over a ∼7 year period and found that the CPCP618

can differ by as much as 40%, when StormDARN radars are included in the convection619

model, which is equivalent to a difference of 32 kV for a CPCP of 80 kV without the Stor-620

mDARN radars. In comparison, this study compares individual 2-min maps over a sim-621

ilar ∼7 year period and shows that when using this model, the maximum observed per-622

centage difference in the CPCP is however a much larger difference: a reduction of 63%623

for a CPCP across this study of 49 kV in D3, which reduces to 18 kV in D4. The largest624

increases we find in CPCP when going from D3 to D4 is 57 kV, which happens for a CPCP625

of 33 kV in D3 and is a smaller difference than the smallest decrease (44 kV), which hap-626

pens for a CPCP of 78 kV in D3.627

Fig. 5 and 6 show that both AL and Sym-H show a linear trend in the likelihood628

of observations with HMB: As the HMB tends to lower latitudes, the values in AL and629

Sym-H tend to be enhanced until the HMB reaches a latitude of ∼50◦, at which point630

the observational likelihood reduces drastically overall. We also find that at HMBs <50◦,631

n is likely to be smaller in general also, which means the observations in this HMB range632

are less dense and less well constrained. This is not surprising, as not all radars are ca-633

pable of measuring HMBs <50◦. Furthermore, the coverage from radars at mid-latitudes634

is sparser as the radars tend to, on average, return less backscatter per radar than the635

higher latitude radars.636

We also explored how adding the newest radars to the dataset, affects the convec-637

tion maps (D0 to D4 comaprison). This shows that the HMB is more likely to be found638

at lower latitudes (50-40◦) for D4 due to the lower observational latitude limit of the data.639

This means that the HMB is more likely to be observed at lower latitudes when the au-640

roral electrojet indices (AL and AE) are enhanced. It is possible that the observational641
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peak in AL and HMB, which shifts from ∼-400nT in D0 to ∼-300nT in D4 and ∼66◦642

in D0 to ∼50◦ in D4, respectively, is still limited by radar coverage and it is possible that643

the decreasing trend we see in the median should continue (see crosses in Fig. 6d and644

e). It is important to note however, that AL and AE are measured by 12 magnetome-645

ter stations and the current system which they measure may well move equatorward dur-646

ing times of high activity. This will mean that the values shown are an underestimate647

rather than a true estimate.648

The RG96 model was built only using the data from the Goose Bay radar, which649

is located at a high-latitude and thus part of our D0 set. Whilst it is one of the oldest650

operating radars in the network (and thus a lot of data is available), the RG96 model651

was constrained in magnetic latitudes from 65-85◦ (Ruohoniemi & Greenwald, 1996). It652

is therefore interesting to find χ2/n reduced, when adding the StormDARN radars. This653

shows that the data is important in generating the convection map files, but from com-654

paring D3 and D4 we show that the model can also make a difference. It is however worth655

noting that due to its limited data ingestion, the RG96 model was not built to be used656

with a radar network that extends to mid-latitudes, whereas TS18 was. Regardless of657

the χ2/n statistic not always decreasing for the variation from D3 to D4, the RG96 model658

does not account for as wide a variety of solar wind driving, dipolar tilt and latitudinal659

changes of the pattern and it thus makes more sense to use the TS18 model for the ex-660

tended dataset, especially when including data from the midlatitudes.661

4.5 The Importance of Parametrizing the HMB662

Much more than just flow velocities are affected by the HMB placement. The lo-663

cation of the HMB determines the boundary of the fitting, but if the CPCP is kept the664

same, the convection strength estimate will differ. Similarly, if the flows are kept the same,665

the CPCP will differ. Having a reliable HMB is therefore paramount to having a reli-666

able map. We have seen variations of the HMB location of up to 35◦ (e.g. Fig. 1) when667

StormDARN radar data are included. This shows that there is a great uncertainty in668

the placement of the HMB and good spatial coverage is paramount to ascertain the re-669

liability of this.670

In either case, the HMB may need to be redefined. Currently, the HMB is calcu-671

lated to be where velocity measurements suggest the electric field is zero, however low672
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velocity measurements associated with imperfect co-rotation will also have an associated673

non-zero electric field. This suggests the HMB would not give the boundary of the con-674

vective regions associated with opening and closing of magnetic flux or that the bound-675

ary presents as a gradual variation.676

A further alternative to the HMB fitting could be the original fitting by Heppner677

and Maynard (1987), who used spacecraft passes to determine the HMB location. This678

parameterization not only provides a non-circular fit, but also one parametrized by Kp,679

so it could be used as an alternative for the HMB fitting. The planetary K-index, Kp,680

is a measure of global geomagnetic activity (e.g. Matzka et al., 2021, and references therein).681

Whilst this is one of the most extensively used indices, it is a 3 hourly index, which is682

a long timescale in the context of ionospheric convection. There is a reason why we do683

not produce convection maps at a 3-hourly cadence: ionospheric convection can and usu-684

ally does differ on much shorter timescales. For example, Walach and Grocott (2019) and685

Walach et al. (2021) showed that during very active times, such as geomagnetic storms,686

ionospheric convection and in particularly the location of the HMB, varies on timescales687

of minutes and we thus do not advise to use a Kp parameterized HMB model. Walach688

and Grocott (2019) showed that during geomagnetic storms, which can also be described689

as extremely driven times, the HMB can move to latitudes as low as 40◦, which Super-690

DARN radars prior to the mid-latitude expansion were not able to observe.691

Fogg et al. (2020) provide an alternative fit for the HMB using AMPERE data, and692

show that the HMB may be placed at too low latitudes when StormDARN data are avail-693

able. This might indicate that a changing HMB is not always an improvement when it694

moves equatorward in D3. It is however worth noting that the fitting by Fogg et al. (2020)695

does not include mid-latitude data and their fitting stops at 55◦, so further analysis is696

necessary, which will be the subject of a future study.697

Sub-auroral Polarization Streams (SAPS) are one of the main phenomenon stud-698

ied with the StormDARN radars (e.g. Kunduri et al., 2017, 2018), which may also af-699

fect HMB parametrization. They consist of fast azimuthal streams, measured below au-700

roral latitudes on the nightside (Kunduri et al., 2018). The possibility of the midlatitude701

radars observing either auroral flows in an expanded pattern, or sub-auroral flows in a702

smaller sized pattern, is an important distinction, which we have not studied in this pa-703

per but warrants further investigation. Kunduri et al. (2018) studied these flows in great704
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detail and found that their occurrence and flow speed tends to increase with higher ge-705

omagnetic activity. To this date, SAPS have not been explicitly taken into account in706

the background SuperDARN models (e.g. RG96 and TS18) and it is thus likely that their707

effects are averaged over. We know that SAPS will occur at or near the lower latitudi-708

nal boundary of the convection patterns (e.g. Kunduri et al., 2018), but further inves-709

tigation is necessary to understand how they fit in with the general convection pattern710

and in particular, how they affect HMB determination.711

4.6 The Importance of Backscatter Echoes712

Historically, n has on average increased due to the expansion of SuperDARN. Nev-713

ertheless, when we compare our most historic version of the dataset (D0) with the ver-714

sion that includes all new radars, as well as updated processing techniques (TS18 and715

range limits), we show that sometimes n decreases (Fig. 2a). This is thus solely due to716

introducing range limits. Whilst adding the newer radars to the dataset can in some cases717

increase n by 500 or more, adding range limits can reduce n by 100. We have shown that718

n is an important parameter in constraining the convection pattern (e.g. HMB or CPCP):719

In particular, we find that if n is high, the CPCP is less likely to differ(i.e. the maps are720

constrained well) and the HMB is more likely to be found at lower latitudes (see Fig. 5).721

When using SuperDARN maps, the reliability of the map is important and often722

this has been tied to n. If n is high, the maps are often deemed more reliable (e.g. Imber723

et al. (2013) identified 200 to be a low threshold number for good convection maps but724

Fogg et al. (2020) chose 400 as threshold for an acceptable number of grid cells contain-725

ing data and Lockwood and McWilliams (2021) used a threshold of 255 for specifying726

the transpolar voltage). This raises the question of whether there is a universal thresh-727

old for n, which can be used to select reliable convection maps?728

In Fig. 7b and c we show that when n is large, χ2/n is unlikely to differ between729

the two datasets (the χ2/n ratio tends to unity). However, in Fig. 7a we also show that730

this ratio is closest to unity when the difference in n between the two datasets is large731

(>200). This means that large differences in n between the datasets can have little im-732

pact on χ2/n.733

We see that for smaller n (< 200), the map fitting is more sensitive to differences734

between the datasets (χ2/n varies by a factor of up to 40). In Fig 7a we see that when735

–30–



manuscript submitted to JGR: Space Physics

n is the same in both datasets the χ2/n ratio can we large or small (either D0 or D4 be-736

ing better constrained). In general, χ2/n is likely to be larger in D4 than in D0 (the dis-737

tributions of χ2/n ratio are skewed towards positive values in Fig. 7b and c).738

Overall, whilst the biggest differences in χ2/n are found only for n < 200, there739

is no clear threshold of n above which χ2/n becomes completely insensitive to differences740

between the datasets, but we show that if we choose n >400, χ2/n is unlikely to differ741

by much and thus the map fitting is less sensitive to changes in the dataset.742

Fig. 7b and c shows that the spread of observations becomes larger for small n and743

the χ2/n ratio approaches 1 for higher n. This means that for high n, χ2/n is likely to744

remain the same, so for small n, the maps are more likely to change when comparing D0745

and D4. This could be due to a number of reasons, but we suggest one main cause: D4746

includes data over a larger spatial range but for a sixth order SHA, only 49 vectors are747

required to constrain the fitting. This is to say that a sixth order SHA can be fully de-748

scribed by 49 vectors if they are spaced appropriately. As more vectors are added (e.g.749

from the midlatitude radars), it is likely that they are adding detail that the sixth or-750

der cannot resolve and and thus χ2/n is not changing drastically.751

This study has not considered the spatial distribution of n in detail, which is likely752

to further influence map quality. Coverage at a range of local times and latitudes is likely753

to better constrain the map fitting procedure and this is something which needs to be754

explored further. SuperDARN map quality is inherently difficult to assess without an755

independent dataset and the definition of quality can be different, depending on the type756

of scientific study (e.g. for a case study, spatial distribution may be a crucial measure757

of quality). Another way to understand quality is to consider quantitative error estimates.758

The SuperDARN assimilatice mapping technique from Cousins et al. (2013) for exam-759

ple, readily provides uncertainty estimates on the potential at all spatial points.760

4.7 Geomagnetic Conditions and SuperDARN Observations761

We have shown in Fig. 5 and 6 that when AL and Sym-H are enhanced, and the762

HMB is at lower latitudes, n tends to also be high. It is worth considering the under-763

lying physics and how these parameters are related.764
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The expanding and contracting polar cap paradigm (e.g. Siscoe & Huang, 1985;765

Lockwood, 1991; Lockwood & Cowley, 1992; Milan, 2015; Walach et al., 2017, and ref-766

erences therein) requires the polar cap to increase in size when the dayside reconnection767

rate exceeds the nightside reconnection rate. This implies that the CPCP also increases768

when dayside driving is high. We have shown that this is mostly the case, although there769

are some deviations to this relationship, which we attribute to noise and errors in solar770

wind propagation. It has long been discussed whether or not the relationship between771

the dayside driving and the CPCP is linear and whether or not the CPCP saturates be-772

yond a threshold (e.g. Hill et al., 1976; Reiff et al., 1981; Doyle & Burke, 1983; Wygant773

et al., 1983; Shepherd, 2007; Mori & Koustov, 2013, and references therein). Shepherd774

et al. (2002) and Shepherd (2007) discuss this in great detail and showed, using Super-775

DARN CPCP measurements, that during high solar wind driving (when the reconnec-776

tion electric field is above 5.5 mV/m), the CPCP saturates.777

Mori and Koustov (2013) talk about a SuperDARN “quantization” effect, whereby778

for high CPCP where the observational density is low and not all maps are well constrained.779

In this case, the CPCP oftentimes takes on the values of the underlying model, which780

are quantized bins for RG96. We see this quantization very clearly in Figs. 3a, 3b, 3c781

and to some extent in Figs. 3d and 6f for RG96, but the quantization problem is solved782

for TS18, which interpolates between solutions of the background model. Whilst this is783

not the focal point of our study, we find that as ΦD increases, the CPCP also increases.784

Similar to Shepherd (2007), we note that observational density is an important factor785

when considering the behaviour of these parameters. We also find that depending on the786

dataset used (e.g. D0 or D4), the trend and steepness of the curve varies due to obser-787

vational density of high CPCP for D0 being much lower than for D4. Furthermore, we788

find that the spread in values is much higher than observed by Shepherd (2007), which789

is due to a larger sample size (they only used equinox data for their study) and shorter790

sampling (they used 10 minute cadence for their map files whereas we use 2 minutes).791

We suggest that using the verb “saturate” to describe the behaviour of these parame-792

ters is misplaced, as even at high values of ΦD the CPCP increases, whereas a satura-793

tion implies the gradient of the curve reaching 0.794

Whilst n is high when AL, Sym-H and the HMB are enhanced, we are not suggest-795

ing that the correlation equates to a causal link. This was already discussed by Walach796

and Grocott (2019), who showed that the number of backscatter echoes tends to increase797
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during geomagnetic storms (when Sym-H is enhanced), as dayside driving increases, the798

polar cap grows and the HMB moves to lower latitudes. Currie et al. (2016) showed how-799

ever that during intense geomagnetic storms, a reduction of backscatter was observed800

in the Bruny Island radar in the middle- to far-ranges, and an increase in the amount801

of backscatter from close-ranges. Here we show statistically, that as Sym-H is enhanced,802

the HMB moves to lower latitudes and the number of backscatter echoes increases for803

mid-ranges (the far- and close- ranges were removed beyond D0 by range limits). We thus804

find that the relationships found by Walach and Grocott (2019) hold statistically, though805

a large amount of variation is observed.806

Wild and Grocott (2008) conducted a study (before the availability of StormDARN807

radars) of regions where backscatter is lost during isolated substorms, and the progres-808

sion through the phases of the substorm due to auroral absorption. They identify that809

backscatter reduction is greatest at ∼70-80◦ magnetic latitude region between ∼19 to810

03 MLT. However, Wild and Grocott (2008) also observe that the main backscatter re-811

gion shifts equatorward to lower latitudes (below ∼65◦) across all local times. Our re-812

sults support this statistically, as we find that the StormDARN radars do on average ob-813

serve more backscatter, and that the backscatter moves to lower latitudes when AL is814

enhanced (which is expected to be the case for substorms). We also find that this trend815

differs slightly for D0 and D4: due to better coverage with the StormDARN radars, the816

HMB for D4 moves to lower latitudes than for D0. The trend of decreasing HMB with817

decreasing AL is a statistical one and thus breaks at a latitudes close to ∼40◦ due to low818

observational densities819

4.8 Is χ2/n an Adequate Measure of Map Quality?820

The current most simple way to assess map quality is to look at the χ2/n statis-821

tic. In this study we have explored χ2/n as a way to measure the quality of the fitting822

to the line-of-sight data as defined in the Data and Methods section of this paper. If we823

sum χ2 and divide by the sum of n for each dataset D0 to D4, we obtain the following824

average values: < χ2/n >D0: 1.70; < χ2/n >D1: 2.01; < χ2/n >D2: 2.16; < χ2/n >D3:825

1.88; and < χ2/n >D4: 1.81.826

From this, we might conclude that D0 has overall the highest quality maps and is827

closest to the “good match” criterion (1) identified by Ruohoniemi and Baker (1998),828
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but we have shown that whilst the map fitting may be better for D0, the missing data829

also equates to a qualitative penalty. A map could have a χ2/n close to 1 (i.e. a “good”830

fit), but only have 10 closely clustered vectors, in which case the map is unreliable. We831

find from the χ2/n distributions that most of the impact on χ2/n are provided by range832

limits and the addition of the StormDARN radar data. This emphasizes the importance833

of good spatial coverage. We also see from these statistics, that overall, the TS18 model834

improves map fitting.835

Furthermore, at high latitudes, in the auroral zone and polar cap, fluctuations in836

the velocity can be greater due to increased turbulence. These velocities are more likely837

to fit badly with low order spherical harmonic fits (∼6) leading to larger increases in χ2/n.838

Hence, the removal of far-range scatter will obviously reduce the average χ2/n. Conversely,839

low velocity scatter measured in regions of lower turbulence at low latitudes fits better840

to the spherical harmonic expansion and will have a smaller contribution to χ2 per scat-841

ter point (regardless of order), and so the addition of more low-latitude low-velocity data842

will again reduce the average χ2/n. Consequently, an amount of low latitude scatter will843

have a much smaller contribution to χ2/n than the same amount of higher latitude scat-844

ter. But an increased goodness of fit does not always mean a “better” map. There are845

many example maps (such as those provided in Fig. S1c and d) in which a low χ2/n does846

not always equate to a higher quality map. True quality is however difficult to appraise.847

In order to achieve this, one would have to define quality first, which is beyond the scope848

of this study. In order to truly establish map quality, we recommend the close inspec-849

tion of the individual maps and comparison with independent data, where available (e.g.850

Walach et al., 2017).851

5 Summary852

We have investigated how the SuperDARN maps have changed historically by cre-853

ating 5 different versions of the convection map files for a timespan of 6 years and com-854

paring them statistically. By using different processing parameters and gradually intro-855

ducing more data to the maps, we were able to investigate how the derived convection856

maps differ with the inclusion of857

• backscatter range limits (as was used by Thomas and Shepherd (2018))858

• the polar cap radars, PolarDARN859
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• the mid-latitude radars, StormDARN860

• a different background model (we compare Thomas and Shepherd (2018) and Ruohoniemi861

and Greenwald (1996))862

We have shown that863

• introducing range limits does not always decrease χ2/n,864

• n is not a good predictor for how good the fit is once range limits have been ap-865

plied866

• once range limits have been applied the CPCP stays the same 30% of the time and867

the HMB stays constant most of the time (54%)868

• the addition of PolarDARN data tends to reduce the CPCP,869

• PolarDARN radars add the most data to the dataset (on average), but the Stor-870

mDARN radars are also important for constraining the maps,871

• when introducing StormDARN radars to the maps, the χ2/n values tend to de-872

crease, the HMB becomes better constrained and the CPCP tends to increase873

• when changing the background model to TS18, the CPCP tends to decrease for874

lower values of the CPCP in RG96, but is more likely to increase for larger val-875

ues of the CPCP in RG96. If n is however high (> 400), the CPCP is less likely876

to differ (differences ∼<20 kV).877

• as n, AL and Sym-H all increase, the HMB tends to go to lower latitudes, which878

appears to be a linear trend, though a break is seen at HMB ∼50 degrees, where879

the observational density drops off sharply.880

• if n is high, the CPCP is less likely to differ and the HMB is more likely to be found881

at lower latitudes and χ2/n tends to differ by the least amount,882

• there is no clear break, where n universally produces good convection maps, but883

we show that for n > 400, χ2/n is unlikely to differ by much and thus the map884

is well constrained.885

Naturally, assessing map quality has to include a qualitative discussion and we have886

found that there is currently no perfect quantitative method for this assessment.887

SuperDARN provides a powerful tool for assessing solar wind-magnetosphere-ionosphere888

coupling and studying responses to solar wind driving of the system. Due to observa-889

tions being available almost all the time, and new radars having been constructed over890
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the years, the dataset now spans several decades and is well-understood. We have pre-891

sented a statistical analysis, which shows that the measured parameters (such as the CPCP892

and HMB) differ little on average, though in some circumstances they can be highly sus-893

ceptible to which processing parameters are used, as well as which radars are used when894

generating map files. We have shown that most of the time, parameters such as the CPCP895

are unlikely to change by a large amount. However, when SuperDARN maps are used896

for studies of specific conditions or small case studies, as a sampling bias can occur. As897

a result, care has to be taken when processing the data. We have found that a high num-898

ber of SuperDARN backscatter echoes are particularly important when constraining maps,899

so it is important to include StormDARN data in the generation of SuperDARN con-900

vection maps. The variety of conditions that we see in our statistical comparison illus-901

trates how rich the SuperDARN dataset is. Furthermore, we have illustrated concepts902

which can be improved. For example, we have also shown that χ2/n is not an adequate903

measure of map quality and whilst the HMB is largely well-defined, the method can still904

be improved. Further work is thus necessary to evaluate convection map quality and gen-905

erate a robust HMB selection method, especially at lower latitudes.906

Appendix A SuperDARN processing parameters907

In the SuperDARN processing (see section 2), we use the following parameters and908

functions from RST:909

• For fitting the autocorrelation function to the raw data: ’make fit’ with the op-910

tion ’-fitacf-version 2.5’.911

• To make the gridded map files, the options ’-i 120 -tl 120 -chisham -c’ were added912

to ’make grid’913

• To add the range limits to the gridded files, the same options as above were used914

but in addition, the options ’-minsrng 800 -maxsrng 2000’ were added.915

• The function ’map grd’ was used with ’map addhmb -vel 100 -cnt 3’. Adding these916

options to ’map addhmb’ chooses the Heppner-Maynard boundary to the lowest917

possible latitude for which a minimum of three LOS vectors with velocities greater918

than 100 m/s lie along its boundary.919
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• To make the convection maps, we also use ’map addimf -if’ with the text file con-920

taining the IMF data and the option ’-df’ with the text file containing the IMF921

delay times.922

• We then use ’map addmodel -o 6 ’ for a sixth order expansion and use ’-d’ to spec-923

ify a light doping level.924

• Finally, we add the model option ’-rg96’ to D0-D3 and ’-ts18’ to D4 and use the925

function ’map fit’ to make the convection map files.926

• We also use the function ’cnvmaptomap’ to convert the binary file to ASCII for-927

mat and ’trim map’ with the options ’-st’, ’-et’, ’-sd’ and ’-ed’ to make two-hour928

long map files for our archive, but this is not necessary to obtain the results for929

this study.930
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