56 research outputs found
Behavioral responses of wild rodents to owl calls in an austral temperate forest
Ecologically based rodent management strategies are arising as a sustainable approach to rodent control, allowing us to preserve biodiversity while safeguarding human economic activities. Despite predator signals being known to generally repel rodents, few field-based studies have compared the behavioral effects of several predators on different prey species, especially in Neotropical ecosystems. Here, we used camera traps to study the behavior of rodent species native to the Chilean temperate forest (Abrothrix spp., long-tailed pygmy rice rat Oligoryzomys longicaudatus) and an introduced rodent (black rat Rattus rattus). Using playbacks of raptor calls, we experimentally exposed rodents to three predation risk treatments: austral pygmy owl calls (Glaucidium nana), rufous-legged owl calls (Strix rufipes) and a control treatment (absence of owl calls). We evaluated the effects of the treatments on the time allocated to three behaviors: feeding time, locomotor activity and vigilance. Moonlight and vegetation cover were also considered in the analyses, as they can modify perceived predation risk. Results showed that predator calls and environmental factors modified prey behavior depending not only on the predator species, but also on the rodent species. Consequently, owl playbacks could be regarded as a promising rodent control tool, knowing that future studies would be critical to deeply understand differences between species in order to select the most effective predator cues
Triple-Tube-Ostomy: A Novel Technique for the Surgical Treatment of Iatrogenic Duodenal Perforation
Although duodenal perforation is currently an infrequent complication of medical procedures, its incidence in the future predictably will increase as endoscopic treatment of duodenal neoplasms becomes more frequently used. In some cases, duodenal perforation is difficult to treat even surgically. We report here a novel technique called âtriple-tube-ostomyâ for the treatment of iatrogenic duodenal perforation. Since November 2009, there have been three cases of iatrogenic perforation of the duodenum, due to various causes, which we have treated with our novel technique. The main principles of the technique are biliary diversion, decompression of the duodenum, and early enteral nutrition. All patients who underwent the triple-tube-ostomy procedure had good postoperative courses, with few complications. The novel surgical technique we describe in this report is safe, reliable, easy to learn and perform, and led to a good postoperative course in all cases where we performed it
Liver Parenchyma Perforation following Endoscopic Retrograde Cholangiopancreatography
Although endoscopic retrograde cholangiopancreatography (ERCP) is an effective modality for the diagnosis and treatment of biliary and pancreatic diseases, it is still related with several severe complications. We report on the case of a female patient who developed liver parenchyma perforation following ERCP. She underwent ERCP with sphincterotomy and extraction of a common bile duct stone. Shortly after ERCP, abdominal distension was identified. Abdominal computed tomography revealed intraabdominal air leakage and leakage of contrast dye penetrating the liver parenchyma into the space around the spleen. Since periampullary perforation related to sphincterotomy could not be denied, she was referred for immediate surgery. Obvious perforation could not be found at surgery. Cholecystectomy, insertion of a T tube into the common bile duct, placement of a duodenostomy tube and drainage of the retroperitoneum were performed. She did well postoperatively and was discharged home on postoperative day 28. In conclusion, as it is well recognized that perforation is one of the most serious complication related to ERCP, liver parenchyma perforation should be suspected as a cause
Searching for gravitational waves from known pulsars
We present upper limits on the amplitude of gravitational waves from 28
isolated pulsars using data from the second science run of LIGO. The results
are also expressed as a constraint on the pulsars' equatorial ellipticities. We
discuss a new way of presenting such ellipticity upper limits that takes
account of the uncertainties of the pulsar moment of inertia. We also extend
our previous method to search for known pulsars in binary systems, of which
there are about 80 in the sensitive frequency range of LIGO and GEO 600.Comment: Accepted by CQG for the proceeding of GWDAW9, 7 pages, 2 figure
Setting upper limits on the strength of periodic gravitational waves from PSR J1939+2134 using the first science data from the GEO 600 and LIGO detectors
Data collected by the GEO 600 and LIGO interferometric gravitational wave detectors during their first observational science run were searched for continuous gravitational waves from the pulsar J1939+2134 at twice its rotation frequency. Two independent analysis methods were used and are demonstrated in this paper: a frequency domain method and a time domain method. Both achieve consistent null results, placing new upper limits on the strength of the pulsar's gravitational wave emission. A model emission mechanism is used to interpret the limits as a constraint on the pulsar's equatorial ellipticity
First upper limits from LIGO on gravitational wave bursts
We report on a search for gravitational wave bursts using data from the first
science run of the LIGO detectors. Our search focuses on bursts with durations
ranging from 4 ms to 100 ms, and with significant power in the LIGO sensitivity
band of 150 to 3000 Hz. We bound the rate for such detected bursts at less than
1.6 events per day at 90% confidence level. This result is interpreted in terms
of the detection efficiency for ad hoc waveforms (Gaussians and sine-Gaussians)
as a function of their root-sum-square strain h_{rss}; typical sensitivities
lie in the range h_{rss} ~ 10^{-19} - 10^{-17} strain/rtHz, depending on
waveform. We discuss improvements in the search method that will be applied to
future science data from LIGO and other gravitational wave detectors.Comment: 21 pages, 15 figures, accepted by Phys Rev D. Fixed a few small typos
and updated a few reference
Analysis of LIGO data for gravitational waves from binary neutron stars
We report on a search for gravitational waves from coalescing compact binary
systems in the Milky Way and the Magellanic Clouds. The analysis uses data
taken by two of the three LIGO interferometers during the first LIGO science
run and illustrates a method of setting upper limits on inspiral event rates
using interferometer data. The analysis pipeline is described with particular
attention to data selection and coincidence between the two interferometers. We
establish an observational upper limit of 1.7 \times 10^{2}M_\odot$.Comment: 17 pages, 9 figure
Upper limits on the strength of periodic gravitational waves from PSR J1939+2134
The first science run of the LIGO and GEO gravitational wave detectors
presented the opportunity to test methods of searching for gravitational waves
from known pulsars. Here we present new direct upper limits on the strength of
waves from the pulsar PSR J1939+2134 using two independent analysis methods,
one in the frequency domain using frequentist statistics and one in the time
domain using Bayesian inference. Both methods show that the strain amplitude at
Earth from this pulsar is less than a few times .Comment: 7 pages, 1 figure, to appear in the Proceedings of the 5th Edoardo
Amaldi Conference on Gravitational Waves, Tirrenia, Pisa, Italy, 6-11 July
200
Detector Description and Performance for the First Coincidence Observations between LIGO and GEO
For 17 days in August and September 2002, the LIGO and GEO interferometer
gravitational wave detectors were operated in coincidence to produce their
first data for scientific analysis. Although the detectors were still far from
their design sensitivity levels, the data can be used to place better upper
limits on the flux of gravitational waves incident on the earth than previous
direct measurements. This paper describes the instruments and the data in some
detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial
change
Improving the sensitivity to gravitational-wave sources by modifying the input-output optics of advanced interferometers
We study frequency dependent (FD) input-output schemes for signal-recycling
interferometers, the baseline design of Advanced LIGO and the current
configuration of GEO 600. Complementary to a recent proposal by Harms et al. to
use FD input squeezing and ordinary homodyne detection, we explore a scheme
which uses ordinary squeezed vacuum, but FD readout. Both schemes, which are
sub-optimal among all possible input-output schemes, provide a global noise
suppression by the power squeeze factor, while being realizable by using
detuned Fabry-Perot cavities as input/output filters. At high frequencies, the
two schemes are shown to be equivalent, while at low frequencies our scheme
gives better performance than that of Harms et al., and is nearly fully
optimal. We then study the sensitivity improvement achievable by these schemes
in Advanced LIGO era (with 30-m filter cavities and current estimates of
filter-mirror losses and thermal noise), for neutron star binary inspirals, and
for narrowband GW sources such as low-mass X-ray binaries and known radio
pulsars. Optical losses are shown to be a major obstacle for the actual
implementation of these techniques in Advanced LIGO. On time scales of
third-generation interferometers, like EURO/LIGO-III (~2012), with
kilometer-scale filter cavities, a signal-recycling interferometer with the FD
readout scheme explored in this paper can have performances comparable to
existing proposals. [abridged]Comment: Figs. 9 and 12 corrected; Appendix added for narrowband data analysi
- âŠ