1,371 research outputs found
Effects of Pore Walls and Randomness on Phase Transitions in Porous Media
We study spin models within the mean field approximation to elucidate the
topology of the phase diagrams of systems modeling the liquid-vapor transition
and the separation of He--He mixtures in periodic porous media. These
topologies are found to be identical to those of the corresponding random field
and random anisotropy spin systems with a bimodal distribution of the
randomness. Our results suggest that the presence of walls (periodic or
otherwise) are a key factor determining the nature of the phase diagram in
porous media.Comment: REVTeX, 11 eps figures, to appear in Phys. Rev.
Solving 1d plasmas and 2d boundary problems using Jack polynomials and functional relations
The general one-dimensional ``log-sine'' gas is defined by restricting the
positive and negative charges of a two-dimensional Coulomb gas to live on a
circle. Depending on charge constraints, this problem is equivalent to
different boundary field theories. We study the electrically neutral case,
which is equivalent to a two-dimensional free boson with an impurity cosine
potential. We use two different methods: a perturbative one based on Jack
symmetric functions, and a non-perturbative one based on the thermodynamic
Bethe ansatz and functional relations. The first method allows us to compute
explicitly all coefficients in the virial expansion of the free energy and the
experimentally-measurable conductance. Some results for correlation functions
are also presented. The second method provides in particular a surprising
fluctuation-dissipation relation between the free energy and the conductance.Comment: 19 page
The Relativistic N-body Problem in a Separable Two-Body Basis
We use Dirac's constraint dynamics to obtain a Hamiltonian formulation of the
relativistic N-body problem in a separable two-body basis in which the
particles interact pair-wise through scalar and vector interactions. The
resultant N-body Hamiltonian is relativistically covariant. It can be easily
separated in terms of the center-of-mass and the relative motion of any
two-body subsystem. It can also be separated into an unperturbed Hamiltonian
with a residual interaction. In a system of two-body composite particles, the
solutions of the unperturbed Hamiltonian are relativistic two-body internal
states, each of which can be obtained by solving a relativistic
Schr\"odinger-like equation. The resultant two-body wave functions can be used
as basis states to evaluate reaction matrix elements in the general N-body
problem. We prove a relativistic version of the post-prior equivalence which
guarantees a unique evaluation of the reaction matrix element, independent of
the ways of separating the Hamiltonian into unperturbed and residual
interactions. Since an arbitrary reaction matrix element involves composite
particles in motion, we show explicitly how such matrix elements can be
evaluated in terms of the wave functions of the composite particles and the
relevant Lorentz transformations.Comment: 42 pages, 2 figures, in LaTe
Fluorescent Protein-Based Methods for On-Plate Screening of Gene Insertion
Unlike the commonly used method of blue-white screening for gene insertion, a fluorescent protein-based screening method offers a gain-of-function screening process without using any co-factors and a gene fusion product with a fluorescent protein reporter that is further useful in cell imaging studies. However, complications related to protein-folding efficiencies of the gene insert in fusion with fluorescent protein reporters prevent effective on-plate bacterial colony selection leading to its limited use.Here, we present three methods to tackle this problem. Our first method promotes the folding of the gene insert by using an N-terminal protein such as calmodulin that is well folded and expressed. Under this method, fluorescence was increased more than 30x over control allowing for enhanced screening. Our second method creates a fluorescent protein that is N-terminal to the gene upon insertion, thereby reducing the dependency of the fluorescent protein reporter on the folding of the gene insert. Our third method eliminates any dependence of the fluorescent protein reporter on the folding of the gene insert by using a stop and start sequence for protein translation.The three methods together will expand the usefulness of fluorescence on-plate screening and offer a powerful alternative to blue-white screening
Ribosomal oxygenases are structurally conserved from prokaryotes to humans
2-Oxoglutarate (2OG)-dependent oxygenases have important roles in the regulation of gene expression via demethylation of N-methylated chromatin components1,2 and in the hydroxylation of transcription factors3 and splicing factor proteins4. Recently, 2OG-dependent oxygenases that catalyse hydroxylation of transfer RNA5,6,7 and ribosomal proteins8 have been shown to be important in translation relating to cellular growth, TH17-cell differentiation and translational accuracy9,10,11,12. The finding that ribosomal oxygenases (ROXs) occur in organisms ranging from prokaryotes to humans8 raises questions as to their structural and evolutionary relationships. In Escherichia coli, YcfD catalyses arginine hydroxylation in the ribosomal protein L16; in humans, MYC-induced nuclear antigen (MINA53; also known as MINA) and nucleolar protein 66 (NO66) catalyse histidine hydroxylation in the ribosomal proteins RPL27A and RPL8, respectively. The functional assignments of ROXs open therapeutic possibilities via either ROX inhibition or targeting of differentially modified ribosomes. Despite differences in the residue and protein selectivities of prokaryotic and eukaryotic ROXs, comparison of the crystal structures of E. coli YcfD and Rhodothermus marinus YcfD with those of human MINA53 and NO66 reveals highly conserved folds and novel dimerization modes defining a new structural subfamily of 2OG-dependent oxygenases. ROX structures with and without their substrates support their functional assignments as hydroxylases but not demethylases, and reveal how the subfamily has evolved to catalyse the hydroxylation of different residue side chains of ribosomal proteins. Comparison of ROX crystal structures with those of other JmjC-domain-containing hydroxylases, including the hypoxia-inducible factor asparaginyl hydroxylase FIH and histone Nε-methyl lysine demethylases, identifies branch points in 2OG-dependent oxygenase evolution and distinguishes between JmjC-containing hydroxylases and demethylases catalysing modifications of translational and transcriptional machinery. The structures reveal that new protein hydroxylation activities can evolve by changing the coordination position from which the iron-bound substrate-oxidizing species reacts. This coordination flexibility has probably contributed to the evolution of the wide range of reactions catalysed by oxygenases
Phytochemicals as antibiotic alternatives to promote growth and enhance host health
There are heightened concerns globally on emerging drug-resistant superbugs and the lack of new antibiotics for treating human and animal diseases. For the agricultural industry, there is an urgent need to develop strategies to replace antibiotics for food-producing animals, especially poultry and livestock. The 2nd International Symposium on Alternatives to Antibiotics was held at the World Organization for Animal Health in Paris, France, December 12-15, 2016 to discuss recent scientific developments on strategic antibiotic-free management plans, to evaluate regional differences in policies regarding the reduction of antibiotics in animal agriculture and to develop antibiotic alternatives to combat the global increase in antibiotic resistance. More than 270 participants from academia, government research institutions, regulatory agencies, and private animal industries from >25 different countries came together to discuss recent research and promising novel technologies that could provide alternatives to antibiotics for use in animal health and production; assess challenges associated with their commercialization; and devise actionable strategies to facilitate the development of alternatives to antibiotic growth promoters (AGPs) without hampering animal production. The 3-day meeting consisted of four scientific sessions including vaccines, microbial products, phytochemicals, immune-related products, and innovative drugs, chemicals and enzymes, followed by the last session on regulation and funding. Each session was followed by an expert panel discussion that included industry representatives and session speakers. The session on phytochemicals included talks describing recent research achievements, with examples of successful agricultural use of various phytochemicals as antibiotic alternatives and their mode of action in major agricultural animals (poultry, swine and ruminants). Scientists from industry and academia and government research institutes shared their experience in developing and applying potential antibiotic-alternative phytochemicals commercially to reduce AGPs and to develop a sustainable animal production system in the absence of antibiotics.Fil: Lillehoj, Hyun. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Liu, Yanhong. University of California; Estados UnidosFil: Calsamiglia, Sergio. Universitat Autònoma de Barcelona; EspañaFil: Fernandez Miyakawa, Mariano Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Patobiología; ArgentinaFil: Chi, Fang. Amlan International; Estados UnidosFil: Cravens, Ron L.. Amlan International; Estados UnidosFil: Oh, Sungtaek. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Gay, Cyril G.. United States Department of Agriculture. Agricultural Research Service; Argentin
Losing Confidence in Luminosity
A mental state is luminous if, whenever an agent is in that state, they are in a position to know that they are. Following Timothy Williamson’s Knowledge and Its Limits, a wave of recent work has explored whether there are any non-trivial luminous mental states. A version of Williamson’s anti-luminosity appeals to a safety- theoretic principle connecting knowledge and confidence: if an agent knows p, then p is true in any nearby scenario where she has a similar level of confidence in p. However, the relevant notion of confidence is relatively underexplored. This paper develops a precise theory of confidence: an agent’s degree of confidence in p is the objective chance they will rely on p in practical reasoning. This theory of confidence is then used to critically evaluate the anti-luminosity argument, leading to the surprising conclusion that although there are strong reasons for thinking that luminosity does not obtain, they are quite different from those the existing literature has considered. In particular, we show that once the notion of confidence is properly understood, the failure of luminosity follows from the assumption that knowledge requires high confidence, and does not require any kind of safety principle as a premis
Comparative Analysis of Measures of Viral Reservoirs in HIV-1 Eradication Studies
HIV-1 reservoirs preclude virus eradication in patients receiving highly active antiretroviral therapy (HAART). The best characterized reservoir is a small, difficult-to-quantify pool of resting memory CD4+ T cells carrying latent but replication-competent viral genomes. Because strategies targeting this latent reservoir are now being tested in clinical trials, well-validated high-throughput assays that quantify this reservoir are urgently needed. Here we compare eleven different approaches for quantitating persistent HIV-1 in 30 patients on HAART, using the original viral outgrowth assay for resting CD4+ T cells carrying inducible, replication-competent viral genomes as a standard for comparison. PCR-based assays for cells containing HIV-1 DNA gave infected cell frequencies at least 2 logs higher than the viral outgrowth assay, even in subjects who started HAART during acute/early infection. This difference may reflect defective viral genomes. The ratio of infected cell frequencies determined by viral outgrowth and PCR-based assays varied dramatically between patients. Although strong correlations with the viral outgrowth assay could not be formally excluded for most assays, correlations achieved statistical significance only for integrated HIV-1 DNA in peripheral blood mononuclear cells and HIV-1 RNA/DNA ratio in rectal CD4+ T cells. Residual viremia was below the limit of detection in many subjects and did not correlate with the viral outgrowth assays. The dramatic differences in infected cell frequencies and the lack of a precise correlation between culture and PCR-based assays raise the possibility that the successful clearance of latently infected cells may be masked by a larger and variable pool of cells with defective proviruses. These defective proviruses are detected by PCR but may not be affected by reactivation strategies and may not require eradication to accomplish an effective cure. A molecular understanding of the discrepancy between infected cell frequencies measured by viral outgrowth versus PCR assays is an urgent priority in HIV-1 cure research
How market structure drives commodity prices
We introduce an agent-based model, in which agents set their prices to maximize profit. At steady state the market self-organizes into three groups: excess producers, consumers and balanced agents, with prices determined by their own resource level and a couple of macroscopic parameters that emerge naturally from the analysis, akin to mean-field parameters in statistical mechanics. When resources are scarce prices rise sharply below a turning point that marks the disappearance of excess producers. To compare the model with real empirical data, we study the relationship between commodity prices and stock-to-use ratios in a range of commodities such as agricultural products and metals. By introducing an elasticity parameter to mitigate noise and long-term changes in commodities data, we confirm the trend of rising prices, provide evidence for turning points, and indicate yield points for less essential commodities
- …