164 research outputs found

    Comparison of Backscattered Scanning Electron Microscopy and Microradiography of Secondary Caries

    Get PDF
    Carious lesions are usually studied using light microscopy and/or microradiography which require preparation of thin sections. Backscattered scanning electron microscopy (BSEM) has received little attention although it provides information similar to that obtained with microradiographs, with the potential for higher resolution. Recently, microscopes have been introduced that can be used to study wet or nonconducting specimens, offering techniques for studying specimens without desiccation or preparation of thin sections. This investigation sought to determine if secondary carious lesions have the same characteristics when studied by microradiography as when using the wet BSEM mode. Microradiographs were made of thin sections from restored teeth with secondary caries induced in an artificial caries system. The thin sections were also studied by BSEM with a partial pressure in the specimen chamber to prevent specimen charging. Comparisons of the lesion size and shape were made using the two methods. Lesion depth measurements in enamel were the same; lesions that penetrated into dentin appeared to be of similar size and shape, but lesion depths measured by BSEM were slightly greater (paired t-test, p \u3c .05). This was a result of cracks at the carious enamel-dentin interface that probably developed during storage of the samples. Variations in the surface enamel rod structure and the development of subsurface lesions were apparent. Several zones were also apparent in the carious dentin, demonstrating loss of dentinal tubule detail in the depth of the lesion, collapse of tubules, and hypermineralized regions near the advancing front of the lesion. Several additional samples of natural carious teeth were examined. They demonstrated the characteristic structural features of the carious process. This method appears to have considerable promise for the study of such lesions

    Four-point bending evaluation of dentin-composite interfaces with various stresses

    Get PDF
    Fracture properties of composite-dentin beams bonded with a self?etching adhesive were tested following short term pretreatments to simulate potential degradation mechanisms (thermal cycling, immersion in 5% NaOCl, or fatigue cycling). Beams of rectangular cross-section were shaped to a size of ~0.87 x 0.87 x 10 mm and placed in a four-point bending apparatus, with the loading points 1.8 and 7.2 mm apart, with the interface centered between the inner rollers. Testing was performed in Hanks? Balanced Salt Solution at 25 ?C . Solid dentin and solid composite beams [n = 6] had bending strengths of 164.4 and 164.6 MPa, respectively, under monotonically increasing loads. Bonded beams [n = 6] had strengths of 56.3 MPa. Thermo-cycling (5? to 55?C), NaOCl solution immersion, or 105 of pre-fatigue cycles did not decrease the strength. Conclusion: Thermal stress, exposure to NaOCL, or 105 cycles of mechanical stress does not decrease bond strength of composite bonded to dentin as tested in four-point bending

    Four-point bending evaluation of dentin-composite interfaces with various stresses

    Get PDF
    Fracture properties of composite-dentin beams bonded with a self?etching adhesive were tested following short term pretreatments to simulate potential degradation mechanisms (thermal cycling, immersion in 5% NaOCl, or fatigue cycling). Beams of rectangular cross-section were shaped to a size of ~0.87 x 0.87 x 10 mm and placed in a four-point bending apparatus, with the loading points 1.8 and 7.2 mm apart, with the interface centered between the inner rollers. Testing was performed in Hanks? Balanced Salt Solution at 25 ?C . Solid dentin and solid composite beams [n = 6] had bending strengths of 164.4 and 164.6 MPa, respectively, under monotonically increasing loads. Bonded beams [n = 6] had strengths of 56.3 MPa. Thermo-cycling (5? to 55?C), NaOCl solution immersion, or 105 of pre-fatigue cycles did not decrease the strength. Conclusion: Thermal stress, exposure to NaOCL, or 105 cycles of mechanical stress does not decrease bond strength of composite bonded to dentin as tested in four-point bending

    Multispectral near-IR reflectance and transillumination imaging of teeth

    Get PDF
    NIR imaging methods do not require ionizing radiation and have great potential for detecting caries lesions (tooth decay) on high-risk proximal and occlusal tooth surfaces and at the earliest stages of development. Previous in vitro and in vivo studies at 1300-nm demonstrated that high contrast reflectance and transillumination images could be acquired of caries lesions on tooth proximal and occlusal surfaces where most new decay is found. Water absorption varies markedly between 1200 and 1600-nm and the scattering properties of enamel and the underlying dentin have not been characterized in this region. Hyperspectral reflectance studies show lower reflectivity from sound enamel and dentin at NIR wavelengths with higher water absorption. The purpose of this imaging study was to determine which NIR wavelengths between 1200 and 1600-nm provide the highest contrast of demineralization or caries lesions for each of the different modes of NIR imaging, including transillumination of proximal and occlusal surfaces along with cross polarization reflectance measurements. A tungsten halogen lamp with several spectral filters and a Ge-enhanced CMOS focal plane array (FPA) sensitive from 400 to 1600-nm were used to acquire the images of caries lesions on extracted teeth. Artificial interproximal lesions were created on twelve tooth sections of 5 & 6-mm thickness that were used for transillumination imaging. Fifty-four extracted teeth with suspected occlusal lesions were also examined in both occlusal transillumination and reflectance imaging modes. Cavity preparations were also cut into whole teeth and filled with composite and used to compare the contrast between composite and enamel at NIR wavelengths. NIR wavelengths longer than 1400-nm are likely to have better performance for the transillumination of occlusal caries lesions while 1300-nm appears best for the transillumination of proximal surfaces. Loss of mobile water in enamel markedly reduced the transparency of the enamel at all NIR wavelengths. Significantly higher contrast was attained for reflectance measurements at wavelengths that have higher water absorption, namely 1460-nm. Wavelengths with higher water absorption also provided higher contrast of composite restorations

    Push-out bond strength of fiber posts to root dentin using glass ionomer and resin modified glass ionomer cements

    Full text link
    OBJECTIVE: The purpose of this study was to assess the push-out bond strength of glass fiber posts to root dentin after cementation with glass ionomer (GICs) and resinmodified glass ionomer cements (RMGICs). MATERIAL AND METHODS: Fifty human maxillary canines were transversally sectioned at 15 mm from the apex. Canals were prepared with a step back technique until the application of a #55 K-file and filled. Post spaces were prepared and specimens were divided into five groups according to the cement used for post cementation: Luting & Lining Cement; Fuji II LC Improved; RelyX Luting; Ketac Cem; and Ionoseal. After cementation of the glass fiber posts, all roots were stored at 100% humidity until testing. For push-out test, 1-mm thick slices were produced. The push-out test was performed in a universal testing machine at a crosshead speed of 0.5 mm/minute and the values (MPa) were analyzed by Kolmogorov-Smirnov and Levene's tests and by two-way ANOVA and Tukey's post hoc test at a significance level of 5%. RESULTS: Fiber posts cemented using Luting & Lining Cement, Fuji II LC Improved, and Ketac Cem presented the highest bond strength to root dentin, followed by RelyX Luting. Ionoseal presented the lowest bond strength values (P>0.05). The post level did not influence the bond strength of fiber posts to root dentin (P=0.148). The major cause of failure was cohesive at the cement for all GICs and RMGICs. CONCLUSIONS: Except for Ionoseal, all cements provided satisfactory bond strength values

    Surfing the spectrum - what is on the horizon?

    Get PDF
    Diagnostic imaging techniques have evolved with technological advancements - but how far? The objective of this article was to explore the electromagnetic spectrum to find imaging techniques which may deliver diagnostic information of equal, or improved, standing to conventional radiographs and to explore any developments within radiography which may yield improved diagnostic data. A comprehensive literature search was performed using Medline, Web of Knowledge, Science Direct and PubMed Databases. Boolean Operators were used and key-terms included (not exclusively): terahertz, X-ray, ultraviolet, visible, infra-red, magnetic resonance, dental, diagnostic, caries and periodontal. Radiographic techniques are primarily used for diagnostic imaging in dentistry, and continued developments in X-ray imaging include: phase contrast, darkfield and spectral imaging. Other modalities have potential application, for example, terahertz, laser doppler and optical techniques, but require further development. In particular, infra-red imaging has regenerated interest with caries detection in vitro, due to improved quality and accessibility of cameras. Non-ionising imaging techniques, for example, infra-red, are becoming more commensurate with traditional radiographic techniques for caries detection. Nevertheless, X-rays continue to be the leading diagnostic image for dentists, with improved diagnostic potential for lower radiation dose becoming a reality

    UNDERSTATED EFFICACY?

    No full text

    Bonded amalgam restorations: laboratory and clinical studies

    No full text
    Contains fulltext : 145678.pdf (Publisher’s version ) (Open Access)115 p
    • …
    corecore