223 research outputs found

    On High-Rate Cryptographic Compression Functions

    Get PDF
    The security of iterated hash functions relies on the properties of underlying compression functions. We study highly efficient compression functions based on block ciphers. We propose a model for high-rate compression functions, and give an upper bound for the rate of any collision resistant compression function in our model. In addition, we show that natural generalizations of constructions by Preneel, Govaerts, and Vandewalle to the case of rate-2 compression functions are not collision resistant

    Identification and dynamics of a beneficial mutation in a long-term evolution experiment with Escherichia coli

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Twelve populations of <it>E. coli </it>were serially propagated for 20,000 generations in a glucose-supplemented minimal medium in order to study the dynamics of evolution. We sought to find and characterize one of the beneficial mutations responsible for the adaptation and other phenotypic changes, including increased cell size, in one of these populations.</p> <p>Results</p> <p>We used transposon-tagging followed by P1-transduction into the ancestor, screening for increased cell size and fitness, co-transduction analysis, and DNA sequencing. We identified a 1-bp insertion in the BoxG1 region located upstream of <it>glmUS</it>, an operon involved in cell-wall biosynthesis. When transduced into the ancestor, this mutation increased competitive fitness by about 5%. This mutation spread through its population of origin between 500 and 1500 generations. Mutations in this region were not found in the other 11 evolving populations, even after 20,000 generations.</p> <p>Conclusion</p> <p>The 1-bp insertion in the BoxG1 region near <it>glmUS </it>was demonstrably beneficial in the environment in which it arose. The absence of similar mutations in the other evolved populations suggests that they substituted other mutations that rendered this particular mutation unimportant. These results show the unpredictability of adaptive evolution, whereas parallel substitutions at other loci in these same populations reveal the predictability.</p

    Outliers from the Mass--Metallicity Relation II: A Sample of Massive Metal-Poor Galaxies from SDSS

    Full text link
    We present a sample of 42 high-mass low-metallicity outliers from the mass--metallicity relation of star-forming galaxies. These galaxies have stellar masses that span log(M_*/M_sun) ~9.4 to 11.1 and are offset from the mass--metallicity relation by -0.3 to -0.85 dex in 12+log(O/H). In general, they are extremely blue, have high star formation rates for their masses, and are morphologically disturbed. Tidal interactions are expected to induce large-scale gas inflow to the galaxies' central regions, and we find that these galaxies' gas-phase oxygen abundances are consistent with large quantities of low-metallicity gas from large galactocentric radii diluting the central metal-rich gas. We conclude with implications for deducing gas-phase metallicities of individual galaxies based solely on their luminosities, specifically in the case of long gamma-ray burst host galaxies.Comment: Accepted for publication in ApJ; 11 pages, 11 figure

    Revealing the High-Redshift Star Formation Rate with Gamma-Ray Bursts

    Full text link
    While the high-z frontier of star formation rate (SFR) studies has advanced rapidly, direct measurements beyond z ~ 4 remain difficult, as shown by significant disagreements among different results. Gamma-ray bursts, owing to their brightness and association with massive stars, offer hope of clarifying this situation, provided that the GRB rate can be properly related to the SFR. The Swift GRB data reveal an increasing evolution in the GRB rate relative to the SFR at intermediate z; taking this into account, we use the highest-z GRB data to make a new determination of the SFR at z = 4-7. Our results exceed the lowest direct SFR measurements, and imply that no steep drop exists in the SFR up to at least z ~ 6.5. We discuss the implications of our result for cosmic reionization, the efficiency of the universe in producing stellar-mass black holes, and ``GRB feedback'' in star-forming hosts.Comment: 4 pages, 2 figures; ApJ Letters, in pres

    SDSS1133: An Unusually Persistent Transient in a Nearby Dwarf Galaxy

    Full text link
    While performing a survey to detect recoiling supermassive black holes, we have identified an unusual source having a projected offset of 800 pc from a nearby dwarf galaxy. The object, SDSS J113323.97+550415.8, exhibits broad emission lines and strong variability. While originally classified as a supernova (SN) because of its nondetection in 2005, we detect it in recent and past observations over 63 yr and find over a magnitude of rebrightening in the last 2 years. Using high-resolution adaptive optics observations, we constrain the source emission region to be <12 pc and find a disturbed host-galaxy morphology indicative of recent merger activity. Observations taken over more than a decade show narrow [O III] lines, constant ultraviolet emission, broad Balmer lines, a constant putative black hole mass over a decade of observations despite changes in the continuum, and optical emission-line diagnostics consistent with an active galactic nucleus (AGN). However, the optical spectra exhibit blueshifted absorption, and eventually narrow Fe II and [Ca II] emission, each of which is rarely found in AGN spectra. While this peculiar source displays many of the observational properties expected of a potential black hole recoil candidate, some of the properties could also be explained by a luminous blue variable star (LBV) erupting for decades since 1950, followed by a Type IIn SN in 2001. Interpreted as an LBV followed by a SN analogous to SN 2009ip, the multi-decade LBV eruptions would be the longest ever observed, and the broad Halpha emission would be the most luminous ever observed at late times (>10 yr), larger than that of unusually luminous supernovae such as SN 1988Z, suggesting one of the most extreme episodes of pre-SN mass loss ever discovered.Comment: Accepted for publication in MNRA

    Impact of baryons on the cluster mass function and cosmological parameter determination

    Get PDF
    Recent results by the Planck collaboration have shown that cosmological parameters derived from the cosmic microwave background anisotropies and cluster number counts are in tension, with the latter preferring lower values of the matter density parameter, Ωm\Omega_\mathrm{m}, and power spectrum amplitude, σ8\sigma_8. Motivated by this, we investigate the extent to which the tension may be ameliorated once the effect of baryonic depletion on the cluster mass function is taken into account. We use the large-volume Millennium Gas simulations in our study, including one where the gas is pre-heated at high redshift and one where the gas is heated by stars and active galactic nuclei (in the latter, the self-gravity of the baryons and radiative cooling are omitted). In both cases, the cluster baryon fractions are in reasonably good agreement with the data at low redshift, showing significant depletion of baryons with respect to the cosmic mean. As a result, it is found that the cluster abundance in these simulations is around 15 per cent lower than the commonly-adopted fit to dark matter simulations by Tinker et al (2008) for the mass range 10141014.5h1M10^{14}-10^{14.5}h^{-1} \mathrm{M}_\odot. Ignoring this effect produces a significant artificial shift in cosmological parameters which can be expressed as Δ[σ8(Ωm/0.27)0.38]0.03\Delta[\sigma_8(\Omega_\mathrm{m}/0.27)^{0.38}]\simeq -0.03 at z=0.17z=0.17 (the median redshift of the Planck\mathit{Planck} cluster sample) for the feedback model. While this shift is not sufficient to fully explain the Planck\mathit{Planck} discrepancy, it is clear that such an effect cannot be ignored in future precision measurements of cosmological parameters with clusters. Finally, we outline a simple, model-independent procedure that attempts to correct for the effect of baryonic depletion and show that it works if the baryon-dark matter back-reaction is negligible.Comment: 10 pages, 5 figures, Accepted by MNRA
    corecore