773 research outputs found

    Interference Study of the chi_c0 (1^3P_0) in the Reaction Proton-Antiproton -> pi^0 pi^0

    Full text link
    Fermilab experiment E835 has observed proton-antiproton annihilation production of the charmonium state chi_c0 and its subsequent decay into pi^0 pi^0. Although the resonant amplitude is an order of magnitude smaller than that of the non-resonant continuum production of pi^0 pi^0, an enhanced interference signal is evident. A partial wave expansion is used to extract physics parameters. The amplitudes J=0 and 2, of comparable strength, dominate the expansion. Both are accessed by L=1 in the entrance proton-antiproton channel. The product of the input and output branching fractions is determined to be B(pbar p -> chi_c0) x B(chi_c0 -> pi^0 pi^0)= (5.09 +- 0.81 +- 0.25) x 10^-7.Comment: 4 pages, 4 figures, Accepted by PRL (July 2003

    Precision measurements of the total and partial widths of the psi(2S) charmonium meson with a new complementary-scan technique in antiproton-proton annihilations

    Full text link
    We present new precision measurements of the psi(2S) total and partial widths from excitation curves obtained in antiproton-proton annihilations by Fermilab experiment E835 at the Antiproton Accumulator in the year 2000. A new technique of complementary scans was developed to study narrow resonances with stochastically cooled antiproton beams. The technique relies on precise revolution-frequency and orbit-length measurements, while making the analysis of the excitation curve almost independent of machine lattice parameters. We study the psi(2S) meson through the processes pbar p -> e+ e- and pbar p -> J/psi + X -> e+ e- + X. We measure the width to be Gamma = 290 +- 25(sta) +- 4(sys) keV and the combination of partial widths Gamma_e+e- * Gamma_pbarp / Gamma = 579 +- 38(sta) +- 36(sys) meV, which represent the most precise measurements to date.Comment: 17 pages, 3 figures, 3 tables. Final manuscript accepted for publication in Phys. Lett. B. Parts of the text slightly expanded or rearranged; results are unchange

    E835 at FNAL: Charmonium Spectroscopy in pˉp\bar p p Annihilations

    Get PDF
    I present preliminary results on the search for hch_c in its ηcγ\eta_c\gamma and J/ψπ0J/\psi\pi^0 decay modes. We observe an excess of \eta_c\gammaeventsnear3526MeVthathasaprobability events near 3526 MeV that has a probability {\cal P} \sim 0.001toarisefrombackgroundfluctations.Theresonanceparametersare to arise from background fluctations. The resonance parameters are M=3525.8 \pm 0.2 \pm 0.2 MeV,MeV, \Gamma\leq1MeV,and 1 MeV, and 10.6\pm 3.7\pm3.4(br) < \Gamma_{\bar{p}p}B_{\eta_c\gamma} < 12.8\pm 4.8\pm4.5(br) eV.WefindnoeventexcesswithinthesearchregionintheeV. We find no event excess within the search region in the J/\psi\pi^0$ mode.Comment: Presented at the 6th International Conference on Hyperons, Charm and Beauty Hadrons (BEACH 2004), Chicago(Il), June 27-July 3,200

    Beneficial effects of &#948;-tocotrienol against oxidative stress in osteoblastic cells: studies on the mechanisms of action

    Get PDF
    Purpose Natural antioxidants are considered as promising compounds in the prevention/treatment of osteoporosis. We studied the ability of purified \u3b4-tocotrienol (\u3b4-TT) isolated from a commercial palm oil (Elaeis guineensis) fraction to protect osteoblast MC3T3-E1 and osteocyte MLO-Y4 cells against tert-butyl hydroperoxide (t-BHP)-induced oxidative damage and the mechanisms involved in its protective action in MC3T3-E1. Methods MC3T3-E1 and MLO-Y4 cells were treated with \u3b4-TT (1.25\u201320 \ub5g/ml for 2 h) followed by t-BHP at 250 \ub5M or 125 \ub5M for 3 h, respectively. MTT test was used to measure cell viability. Apoptotic cells were stained with Hoechst-33258 dye. Intracellular ROS levels were measured by dichlorofluorescein CM-DCFA. The OPT fluorimetric assay was used to detect the reduced glutathione to oxidized glutathione ratio (GSH/GSSG) contents. Results \u3b4-TT significantly prevented the effects of t-BHP on cell viability and apoptosis reaching a maximum protective activity at 10 and 5 \ub5g/ml in MC3T3-E1 and MLO-Y4 cells, respectively. This protective effect was due to a reduction of intracellular ROS levels and an increase in the defense systems shown by the increase in the GSH/GSSG. GSH loss induced by an inhibitor of GSH synthesis significantly reduced the \u3b4-TT-positive effect on ROS levels. \u3b4-TT prevention of oxidative damage was completely removed by combined treatment with the specific inhibitors of PI3K/AKT (LY294002) and Nrf2 (ML385). Conclusions The \u3b4-TT protective effect against oxidative damage in MC3T3-E1 cells is due to a reduction of intracellular ROS levels and an increase of the GSH/GSSG ratio, and involves an interaction between the PI3K/Akt\u2013Nrf2 signaling pathways

    Polarizing a stored proton beam by spin flip?

    Get PDF
    We discuss polarizing a proton beam in a storage ring, either by selective removal or by spin flip of the stored ions. Prompted by recent, conflicting calculations, we have carried out a measurement of the spin flip cross section in low-energy electron-proton scattering. The experiment uses the cooling electron beam at COSY as an electron target. The measured cross sections are too small for making spin flip a viable tool in polarizing a stored beam. This invalidates a recent proposal to use co-moving polarized positrons to polarize a stored antiproton beam.Comment: 18 pages, 6 figure

    Measurement of the Spin-Dependence of the pbar-p Interaction at the AD-Ring

    Full text link
    We propose to use an internal polarized hydrogen storage cell gas target in the AD ring to determine for the first time the two total spin-dependent pbar-p cross sections sigma_1 and sigma_2 at antiproton beam energies in the range from 50 to 450 MeV. The data obtained are of interest by themselves for the general theory of pbar-p interactions since they will provide a first experimental constraint of the spin-spin dependence of the nucleon-antinucleon potential in the energy range of interest. In addition, measurements of the polarization buildup of stored antiprotons are required to define the optimum parameters of a future, dedicated Antiproton Polarizer Ring (APR), intended to feed a double-polarized asymmetric pbar-p collider with polarized antiprotons. Such a machine has recently been proposed by the PAX collaboration for the new Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt, Germany. The availability of an intense stored beam of polarized antiprotons will provide access to a wealth of single- and double-spin observables, thereby opening a new window on QCD spin physics.Comment: 51 pages, 23 figures, proposal submitted to the SPS committee of CER

    Heavy Quarkonium Physics

    Get PDF
    This report is the result of the collaboration and research effort of the Quarkonium Working Group over the last three years. It provides a comprehensive overview of the state of the art in heavy-quarkonium theory and experiment, covering quarkonium spectroscopy, decay, and production, the determination of QCD parameters from quarkonium observables, quarkonia in media, and the effects on quarkonia of physics beyond the Standard Model. An introduction to common theoretical and experimental tools is included. Future opportunities for research in quarkonium physics are also discussed.Comment: xviii + 487 pages, 260 figures. The full text is also available at the Quarkonium Working Group web page: http://www.qwg.to.infn.i

    Operational experience, improvements, and performance of the CDF Run II silicon vertex detector

    Full text link
    The Collider Detector at Fermilab (CDF) pursues a broad physics program at Fermilab's Tevatron collider. Between Run II commissioning in early 2001 and the end of operations in September 2011, the Tevatron delivered 12 fb-1 of integrated luminosity of p-pbar collisions at sqrt(s)=1.96 TeV. Many physics analyses undertaken by CDF require heavy flavor tagging with large charged particle tracking acceptance. To realize these goals, in 2001 CDF installed eight layers of silicon microstrip detectors around its interaction region. These detectors were designed for 2--5 years of operation, radiation doses up to 2 Mrad (0.02 Gy), and were expected to be replaced in 2004. The sensors were not replaced, and the Tevatron run was extended for several years beyond its design, exposing the sensors and electronics to much higher radiation doses than anticipated. In this paper we describe the operational challenges encountered over the past 10 years of running the CDF silicon detectors, the preventive measures undertaken, and the improvements made along the way to ensure their optimal performance for collecting high quality physics data. In addition, we describe the quantities and methods used to monitor radiation damage in the sensors for optimal performance and summarize the detector performance quantities important to CDF's physics program, including vertex resolution, heavy flavor tagging, and silicon vertex trigger performance.Comment: Preprint accepted for publication in Nuclear Instruments and Methods A (07/31/2013
    corecore