165 research outputs found
Editorial: Occupational Neuroscience: Nervous System's Health at the Workplace
Although counts of occupational neurological disorder
compose only a small part of the overall occupational disorders,
it has a significant impact on the occupational safety and
health system. With this Research Topic, we have promoted an
increased attention and interest in strengthening the existing
ties and dialogue between neuroscience and occupational health
from prevention, to diagnosis and management up labor
reintegration strategies of workers. Workplace participation of
individuals with disabilities continues to be a challenge. From
a broader perspective, this improvement might help to reduce
the percentage of work leave due to disease, reduce workplace
accidents, and improve the mental health of worker
Muscle fiber conduction velocity is more affected after eccentric than concentric exercise
It has been shown that mean muscle fiber conduction velocity (CV) can be acutely impaired after eccentric exercise. However, it is not known whether this applies to other exercise modes. Therefore, the purpose of this experiment was to compare the effects of eccentric and concentric exercises on CV, and amplitude and frequency content of surface electromyography (sEMG) signals up to 24 h post-exercise. Multichannel sEMG signals were recorded from biceps brachii muscle of the exercised arm during isometric maximal voluntary contraction (MVC) and electrically evoked contractions induced by motor-point stimulation before, immediately after and 2 h after maximal eccentric (ECC group, N = 12) and concentric (CON group, N = 12) elbow flexor exercises. Isometric MVC decreased in CON by 21.7 ± 12.0% (± SD, p < 0.01) and by 30.0 ± 17.7% (p < 0.001) in ECC immediately post-exercise when compared to baseline. At 2 h post-exercise, ECC showed a reduction in isometric MVC by 24.7 ± 13.7% (p < 0.01) when compared to baseline, while no significant reduction (by 8.0 ± 17.0%, ns) was observed in CON. Similarly, reduction in CV was observed only in ECC both during the isometric MVC (from baseline of 4.16 ± 0.3 to 3.43 ± 0.4 m/s, p < 0.001) and the electrically evoked contractions (from baseline of 4.33 ± 0.4 to 3.82 ± 0.3 m/s, p < 0.001). In conclusion, eccentric exercise can induce a greater and more prolonged reduction in muscle force production capability and CV than concentric exercis
Characterizing daily life experience of patients on maintenance dialysis
Background. Despite growing literature of the dialysis patients’ high burden of illness and a compromised quality of life, little is known about their daily life experiences
Outcomes after urgent thyroidectomy following rapid control of thyrotoxicosis in Graves’ disease are similar to those after elective surgery in well-controlled disease
Background
Surgery for Graves’ disease (GD) is usually performed after adequate control with medical treatment. Occasionally, rapid pre-operative optimization is required. The primary objective was to compare the outcomes of patients undergoing elective surgery for well-controlled GD with those undergoing rapid pre-operative treatment. We also propose a formal treatment protocol for future use.
Methods
A retrospective cohort study in a tertiary referral centre included 247 patients with well-controlled GD undergoing elective surgery and 19 patients with poorly controlled disease undergoing surgery after rapid optimization. The latter group did not respond well to thionamides (carbimazole and/or propylthiouracil) or had intolerance or side effects to thionamides and were treated with a range of non-thionamide drugs, including Lugol’s iodine, cholestyramine, beta blockers and steroids (with or without thionamides), and closely monitored for 1–2 weeks before surgery. Outcome measures included thyroid storm, hypoparathyroidism and recurrent laryngeal nerve palsy.
Results
In total, 266 patients with male-to-female ratio of 1:6 and median (interquartile range) age of 39 (31–51) were included. Overall, long-term recurrent laryngeal palsy and hypoparathyroidism occurred in 1 (0.38%) and 13 (4.9%) patients, respectively. No patient had thyroid storm. There was no significant difference in hypoparathyroidism (p = 1), vocal cord palsy (p = 0.803) and post-operative bleeding (p = 0.362), between elective surgery and rapid optimization groups.
Conclusion
Rapid pre-operative treatment is effective, safe and is associated with similar outcomes compared to usual treatment. A rapid pre-operative optimization protocol is proposed
Motor unit potential morphology differences in individuals with non-specific arm pain and lateral epicondylitis
<p>Abstract</p> <p>Background</p> <p>The pathophysiology of non-specific arm pain (NSAP) is unclear and the diagnosis is made by excluding other specific upper limb pathologies, such as lateral epicondylitis or cervical radiculopathy. The purpose of this study was to determine: (i) if the quantitative parameters related to motor unit potential morphology and/or motor unit firing patterns derived from electromyographic (EMG) signals detected from an affected muscle of patients with NSAP are different from those detected in the same muscle of individuals with lateral epicondylitis (LE) and/or control subjects and (ii) if the quantitative EMG parameters suggest that the underlying pathophysiology in NSAP is either myopathic or neuropathic in nature.</p> <p>Methods</p> <p>Sixteen subjects with NSAP, 11 subjects with LE, eight subjects deemed to be at-risk for developing a repetitive strain injury, and 37 control subjects participated. A quantitative electromyography evaluation was completed using decomposition-based quantitative electromyography (DQEMG). Needle- and surface-detected EMG signals were collected during low-level isometric contractions of the extensor carpi radialis brevis (ECRB) muscle. DQEMG was used to extract needle-detected motor unit potential trains (MUPTs), and needle-detected motor unit potential (MUP) and surface detected motor unit potential (SMUP) morphology and motor unit (MU) firing rates were compared among the four groups using one-way analysis of variance (ANOVA). Post hoc analyses were performed using Tukey's pairwise comparisons.</p> <p>Results</p> <p>Significant group differences were found for all MUP variables and for MU firing rate (<it>p</it> < 0.006). The post-hoc analyses revealed that patients with NSAP had smaller MUP amplitude and SMUP amplitude and area compared to the control and LE groups (<it>p </it>< 0.006). MUP duration and AAR values were significantly larger in the NSAP, LE and at-risk groups compared to the control group (<it>p </it>< 0.006); while MUP amplitude, duration and AAR values were smaller in the NSAP compared to the LE group. SMUP duration was significantly shorter in the NSAP group compared to the control group (<it>p </it>< 0.006). NSAP, LE and at-risk subjects had lower mean MU firing rates than the control subjects (<it>p </it>< 0.006).</p> <p>Conclusion</p> <p>The size-related parameters suggest that the NSAP group had significantly smaller MUPs and SMUPs than the control and LE subjects. Smaller MUPs and SMUPs may be indicative of muscle fiber atrophy and/or loss. A prospective study is needed to confirm any causal relationship between smaller MUPs and SMUPs and NSAP as found in this work.</p
The Value of Intraoperative Parathyroid Hormone Monitoring in Localized Primary Hyperparathyroidism: A Cost Analysis
Minimally invasive parathyroidectomy (MIP) is the preferred approach to primary hyperparathyroidism (PHPT) when a single adenoma can be localized preoperatively. The added value of intraoperative parathyroid hormone (IOPTH) monitoring remains debated because its ability to prevent failed parathyroidectomy due to unrecognized multiple gland disease (MGD) must be balanced against assay-related costs. We used a decision tree and cost analysis model to examine IOPTH monitoring in localized PHPT.
Literature review identified 17 studies involving 4,280 unique patients, permitting estimation of base case costs and probabilities. Sensitivity analyses were performed to evaluate the uncertainty of the assumptions associated with IOPTH monitoring and surgical outcomes. IOPTH cost, MGD rate, and reoperation cost were varied to evaluate potential cost savings from IOPTH.
The base case assumption was that in well-localized PHPT, IOPTH monitoring would increase the success rate of MIP from 96.3 to 98.8%. The cost of IOPTH varied with operating room time used. IOPTH reduced overall treatment costs only when total assay-related costs fell below 12,000 (compared with initial MIP cost of $3733). Setting the positive predictive value of IOPTH at 100% and reducing the false-negative rate to 0% did not substantially alter these findings.
Institution-specific factors influence the value of IOPTH. In this model, IOPTH increased the cure rate marginally while incurring approximately 4% additional cost
Proteomics identifies neddylation as a potential therapy target in small intestinal neuroendocrine tumors.
Patients with small intestinal neuroendocrine tumors (SI-NETs) frequently develop spread disease; however, the underlying molecular mechanisms of disease progression are not known and effective preventive treatment strategies are lacking. Here, protein expression profiling was performed by HiRIEF-LC-MS in 14 primary SI-NETs from patients with and without liver metastases detected at the time of surgery and initial treatment. Among differentially expressed proteins, overexpression of the ubiquitin-like protein NEDD8 was identified in samples from patients with liver metastasis. Further, NEDD8 correlation analysis indicated co-expression with RBX1, a key component in cullin-RING ubiquitin ligases (CRLs). In vitro inhibition of neddylation with the therapeutic agent pevonedistat (MLN4924) resulted in a dramatic decrease of proliferation in SI-NET cell lines. Subsequent mass spectrometry-based proteomics analysis of pevonedistat effects and effects of the proteasome inhibitor bortezomib revealed stabilization of multiple targets of CRLs including p27, an established tumor suppressor in SI-NET. Silencing of NEDD8 and RBX1 using siRNA resulted in a stabilization of p27, suggesting that the cellular levels of NEDD8 and RBX1 affect CRL activity. Inhibition of CRL activity, by either NEDD8/RBX1 silencing or pevonedistat treatment of cells resulted in induction of apoptosis that could be partially rescued by siRNA-based silencing of p27. Differential expression of both p27 and NEDD8 was confirmed in a second cohort of SI-NET using immunohistochemistry. Collectively, these findings suggest a role for CRLs and the ubiquitin proteasome system in suppression of p27 in SI-NET, and inhibition of neddylation as a putative therapeutic strategy in SI-NET
Age-dependent motor unit remodelling in human limb muscles.
Voluntary control of skeletal muscle enables humans to interact with and manipulate the environment. Lower muscle mass, weakness and poor coordination are common complaints in older age and reduce physical capabilities. Attention has focused on ways of maintaining muscle size and strength by exercise, diet or hormone replacement. Without appropriate neural innervation, however, muscle cannot function. Emerging evidence points to a neural basis of muscle loss. Motor unit number estimates indicate that by age around 71 years, healthy older people have around 40 % fewer motor units. The surviving low- and moderate-threshold motor units recruited for moderate intensity contractions are enlarged by around 50 % and show increased fibre density, presumably due to collateral reinnervation of denervated fibres. Motor unit potentials show increased complexity and the stability of neuromuscular junction transmissions is decreased. The available evidence is limited by a lack of longitudinal studies, relatively small sample sizes, a tendency to examine the small peripheral muscles and relatively few investigations into the consequences of motor unit remodelling for muscle size and control of movements in older age. Loss of motor neurons and remodelling of surviving motor units constitutes the major change in ageing muscles and probably contributes to muscle loss and functional impairments. The deterioration and remodelling of motor units likely imposes constraints on the way in which the central nervous system controls movements
Role of Conserved Non-Coding Regulatory Elements in LMW Glutenin Gene Expression
Transcriptional regulation of LMW glutenin genes were investigated in-silico, using publicly available gene sequences and expression data. Genes were grouped into different LMW glutenin types and their promoter profiles were determined using cis-acting regulatory elements databases and published results. The various cis-acting elements belong to some conserved non-coding regulatory regions (CREs) and might act in two different ways. There are elements, such as GCN4 motifs found in the long endosperm box that could serve as key factors in tissue-specific expression. Some other elements, such as the AACA/TA motifs or the individual prolamin box variants, might modulate the level of expression. Based on the promoter sequences and expression characteristic LMW glutenin genes might be transcribed following two different mechanisms. Most of the s- and i-type genes show a continuously increasing expression pattern. The m-type genes, however, demonstrate normal distribution in their expression profiles. Differences observed in their expression could be related to the differences found in their promoter sequences. Polymorphisms in the number and combination of cis-acting elements in their promoter regions can be of crucial importance in the diverse levels of production of single LMW glutenin gene types
Distribution of motor unit potential velocities in short static and prolonged dynamic contractions at low forces: use of the within-subject’s skewness and standard deviation variables
Behaviour of motor unit potential (MUP) velocities in relation to (low) force and duration was investigated in biceps brachii muscle using a surface electrode array. Short static tests of 3.8 s (41 subjects) and prolonged dynamic tests (prolonged tests) of 4 min (30 subjects) were performed as position tasks, applying forces up to 20% of maximal voluntary contraction (MVC). Four variables, derived from the inter-peak latency technique, were used to describe changes in the surface electromyography signal: the mean muscle fibre conduction velocity (CV), the proportion between slow and fast MUPs expressed as the within-subject skewness of MUP velocities, the within-subject standard deviation of MUP velocities [SD-peak velocity (PV)], and the amount of MUPs per second (peak frequency = PF). In short static tests and the initial phase of prolonged tests, larger forces induced an increase of the CV and PF, accompanied with the shift of MUP velocities towards higher values, whereas the SD-PV did not change. During the first 1.5–2 min of the prolonged lower force levels tests (unloaded, and loaded 5 and 10% MVC) the CV and SD-PV slightly decreased and the MUP velocities shifted towards lower values; then the three variables stabilized. The PF values did not change in these tests. However, during the prolonged higher force (20% MVC) test, the CV decreased and MUP velocities shifted towards lower values without stabilization, while the SD-PV broadened and the PF decreased progressively. It is argued that these combined results reflect changes in both neural regulatory strategies and muscle membrane state
- …