91 research outputs found

    Reactivity of the Clay Mineral Montmorillonite: A First Principles Study

    Get PDF
    PhDThe recent development of clay-polymer nanocomposite materials has led to ail increased interest in the structure and properties of clay minerals. In this thesis the reactivity of the clay mineral montmorillonite is explored by means of density functional theory based calculations. In particular three aspects are considered: catalytic properties, cation migration and dehydroxylation. The origin of the catalytic properties of the clay mineral is investigated in the context of the synthesis of clay-polymer nanocomposite materials, by in sttu, intercalative polymerisation. It is found that catalysis is most likely to occur at the clay mineral lattice-edge where exposed aluminium atoms act as Lewis acid sites. Migration of lithium cations into the clay mineral lattice is explored by means of first principles molecular dynamics. Comparison of calculated hvdrox-vl stretching frequencies, with those from experiment indicates that cations migrate to vacant octahedral sites, as oppose to the ditrigonal cavities. Dehydroxylation of the clay mineral is examined by consideration of a cis-vacant pyrophyllite structure. It is shown that dehydroxylation leads to formation of a tyan8-vacant structure, with aluminium in trigonal bipyramidal coordination and a highly distorted tetrahedral layer. Differences in the dehydroxylation behaviour of cm and tran8-vacant pyrophyllite are shown to be due to the fact that in the former adjacent hydroxyl groups bridge different pairs of aluminium atoms, while in the latter they are both bonded to the same pair. Overall density functional theory based calculations are shown to be a powerful tool for the studly of the structure and reactivity of clay minerals.Queen Mary University of London W.R. Grace & Co

    Methodology for determining the electronic thermal conductivity of metals via direct non-equilibrium ab initio molecular dynamics

    Get PDF
    Many physical properties of metals can be understood in terms of the free electron model, as proven by the Wiedemann-Franz law. According to this model, electronic thermal conductivity (κel\kappa_{el}) can be inferred from the Boltzmann transport equation (BTE). However, the BTE does not perform well for some complex metals, such as Cu. Moreover, the BTE cannot clearly describe the origin of the thermal energy carried by electrons or how this energy is transported in metals. The charge distribution of conduction electrons in metals is known to reflect the electrostatic potential (EP) of the ion cores. Based on this premise, we develop a new methodology for evaluating κel\kappa_{el} by combining the free electron model and non-equilibrium ab initio molecular dynamics (NEAIMD) simulations. We demonstrate that the kinetic energy of thermally excited electrons originates from the energy of the spatial electrostatic potential oscillation (EPO), which is induced by the thermal motion of ion cores. This method directly predicts the κel\kappa_{el} of pure metals with a high degree of accuracy.Comment: 7 pages, 3 figures, with Supplementary Information of 19 pages, 7 figures and 7 table

    Equations of state and stability of MgSiO3_3 perovskite and post-perovskite phases from quantum Monte Carlo simulations

    Get PDF
    We have performed quantum Monte Carlo (QMC) simulations and density functional theory (DFT) calculations to study the equations of state of MgSiO3_3 perovskite (Pv) and post-perovskite (PPv), up to the pressure and temperature conditions of the base of Earth's lower mantle. The ground state energies were derived using QMC and the temperature dependent Helmholtz free energies were calculated within the quasi-harmonic approximation and density functional perturbation theory. The equations of state for both phases of MgSiO3_3 agree well with experiments, and better than those from generalized gradient approximation (GGA) calculations. The Pv-PPv phase boundary calculated from our QMC equations of states is also consistent with experiments, and better than previous LDA calculations. We discuss the implications for double crossing of the Pv-PPv boundary in the Earth

    Shear-induced material transfer across the core-mantle boundary aided by the post-perovskite phase transition

    Get PDF
    We present a novel mechanical model for the extraction of outer core material upwards across the CMB into the mantle side region of D" and subsequent interaction with the post-perovskite (ppv) phase transition. A strong requirement of the model is that the D" region behaves as a poro-viscoelastic granular material with dilatant properties. Using new ab-initio estimates of the ppv shear modulus, we show how shear-enhanced dilation promoted by downwelling mantle sets up an instability that drives local fluid flow. If loading rates locally exceed c. 10-12 s-1 , calculated core metal upwelling rates are >10-4 m/s, far in excess of previous estimates based on static percolation or capillary flow. Associated mass flux rates are sufficient to deliver 0.5% outer core mass to D" in <10 6 yr, provided the minimum required loading rate is maintained. Core metal transported upwards into D" may cause local rapid changes in electrical and thermal conductivity and rheology that if preserved, may account for some of the observed small wavelength heterogeneties (e.g. PKP scattering) there

    Compressibility of ferropericlase at high-temperature: evidence for the iron spin crossover in seismic tomography

    Get PDF
    The iron spin crossover in ferropericlase, the second most abundant mineral in Earth's lower mantle, causes changes in a range of physical properties, including seismic wave velocities. Understanding the effect of temperature on the spin crossover is essential to detect its signature in seismic observations and constrain its occurrence in the mantle. Here, we report the first experimental results on the spin crossover-induced bulk modulus softening at high temperatures, derived directly from time-resolved x-ray diffraction measurements during continuous compression of (Mg0.8Fe0.2)O in a resistive-heated dynamic diamond-anvil cell. We present new theoretical calculations of the spin crossover at mantle temperatures benchmarked by the experiments. Based on our results, we create synthetic seismic tomography models to investigate the signature of the spin crossover in global seismic tomography. A tomographic filter is applied to allow for meaningful comparisons between the synthetic models and data-based seismic tomography models, like SP12RTS. A negative anomaly in the correlation between Vs variations and Vc variations (S-C correlation) is found to be the most suitable measure to detect the presence of the spin crossover in tomographic models. When including the effects of the spin crossover, the misfit between the synthetic model and SP12RTS is reduced by 63%, providing strong evidence for the presence of the spin crossover, and hence ferropericlase, in the lower mantle. Future improvement of seismic resolution may facilitate a detailed mapping of spin state using the S-C correlation, providing constraints on mantle temperatures by taking advantage of the temperature sensitivity of the spin crossover

    NASA/GEWEX Surface Radiation Budget: Integrated Data Product With Reprocessed Radiance, Cloud, and Meteorology Inputs, and New Surface Albedo Treatment

    Get PDF
    The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The current release 3.0 (available at gewex-srb.larc.nasa.gov) uses the International Satellite Cloud Climatology Project (ISCCP) DX product for pixel level radiance and cloud information. This product is subsampled to 30 km. ISCCP is currently recalibrating and recomputing their entire data series, to be released as the H product, at 10km resolution. The ninefold increase in pixel number will allow SRB a higher resolution gridded product (e.g. 0.5 degree), as well as the production of pixel-level fluxes. In addition to the input data improvements, several important algorithm improvements have been made. Most notable has been the adaptation of Angular Distribution Models (ADMs) from CERES to improve the initial calculation of shortwave TOA fluxes, from which the surface flux calculations follow. Other key input improvements include a detailed aerosol history using the Max Planck Institut Aerosol Climatology (MAC), temperature and moisture profiles from HIRS, and new topography, surface type, and snow/ice. Here we present results for the improved GEWEX Shortwave and Longwave algorithm (GSW and GLW) with new ISCCP data, the various other improved input data sets and the incorporation of many additional internal SRB model improvements. As of the time of abstract submission, results from 2007 have been produced with ISCCP H availability the limiting factor. More SRB data will be produced as ISCCP reprocessing continues. The SRB data produced will be released as part of the Release 4.0 Integrated Product, recognizing the interdependence of the radiative fluxes with other GEWEX products providing estimates of the Earth's global water and energy cycle (I.e., ISCCP, SeaFlux, LandFlux, NVAP, etc.)

    First-principles calculations of the lattice thermal conductivity of the lower mantle

    Get PDF
    The temperature variations on top of the core-mantle boundary are governed by the thermal conductivity of the minerals that comprise the overlying mantle. Estimates of the thermal conductivity of the most abundant phase, MgSiO3 perovskite, at core-mantle boundary conditions vary by a factor of ten. We performed ab initio simulations to determine the lattice thermal conductivity of MgSiO3 perovskite, finding a value of 6.8 ± 0.9 W m-1 K-1 at core-mantle boundary conditions (136 GPa and 4000 K), consistent with geophysical constraints for the thermal state at the base of the mantle. Thermal conductivity depends strongly on pressure, explaining the dynamical stability of super-plumes. The dependence on temperature and composition is weak in the deep mantle: our results exhibit saturation as the phonon mean free path approaches the interatomic spacing. Combining our results with seismic tomography, we find large lateral variations in the heat-flux from the core that have important implications for core dynamics

    Towards an Improved High Resolution Global Long-Term Solar Resource Database

    Get PDF
    This paper presents an overview of an ongoing project to develop and deliver a solar mapping processing system to the National Renewable Energy Laboratory (NREL) using the data sets that are planned for production at the National Climatic Data Center (NCDC). NCDC will be producing a long-term radiance and cloud property data set covering the globe every three hours at an approximate resolution of 10 x 10 km. NASA, the originators of the Surface meteorology and Solar Energy web portal are collaborating with SUNY-Albany to develop the production system and solar algorithms. The initial result will be a global long-term solar resource data set spanning over 25 years. The ultimate goal of the project is to also deliver this data set and production system to NREL for continual production. The project will also assess the impact of providing these new data to several NREL solar decision support tools

    Experimental Observation of a New Attenuation Mechanism in <i>hcp</i>‐Metals That May Operate in the Earth's Inner Core

    Get PDF
    AbstractSeismic observations show the Earth's inner core has significant and unexplained variation in seismic attenuation with position, depth and direction. Interpreting these observations is difficult without knowledge of the visco‐ or anelastic dissipation processes active in iron under inner core conditions. Here, a previously unconsidered attenuation mechanism is observed in zinc, a low pressure analog of hcp‐iron, during small strain sinusoidal deformation experiments. The experiments were performed in a deformation‐DIA combined with X‐radiography, at seismic frequencies (∼0.003–0.1 Hz), high pressure and temperatures up to ∼80% of melting temperature. Significant dissipation (0.077 ≤ Q−1(ω) ≤ 0.488) is observed along with frequency dependent softening of zinc's Young's modulus and an extremely small activation energy for creep (⩽7 kJ mol−1). In addition, during sinusoidal deformation the original microstructure is replaced by one with a reduced dislocation density and small, uniform, grain size. This combination of behavior collectively reflects a mode of deformation called “internal stress superplasticity”; this deformation mechanism is unique to anisotropic materials and activated by cyclic loading generating large internal stresses. Here we observe a new form of internal stress superplasticity, which we name as “elastic strain mismatch superplasticity.” In it the large stresses are caused by the compressional anisotropy. If this mechanism is also active in hcp‐iron and the Earth's inner‐core it will be a contributor to inner‐core observed seismic attenuation and constrain the maximum inner‐core grain‐size to ≲10 km.</jats:p

    Consequences of lower extremity and trunk muscle fatigue on balance and functional tasks in older people: A systematic literature review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Muscle fatigue reduces muscle strength and balance control in young people. It is not clear whether fatigue resistance seen in older persons leads to different effects. In order to understand whether muscle fatigue may increase fall risk in older persons, a systematic literature review aimed to summarize knowledge on the effects of lower extremity and trunk muscle fatigue on balance and functional tasks in older people was performed.</p> <p>Methods</p> <p>Studies were identified with searches of the PUBMED and SCOPUS data bases.</p> <p>Papers describing effects of lower extremity or trunk muscle fatigue protocols on balance or functional tasks in older people were included. Studies were compared with regards to study population characteristics, fatigue protocol, and balance and functional task outcomes.</p> <p>Results</p> <p>Seven out of 266 studies met the inclusion criteria. Primary findings were: fatigue via resistance exercises to lower limb and trunk muscles induces postural instability during quiet standing; induced hip, knee and ankle muscle fatigue impairs functional reach, reduces the speed and power of sit-to-stand repetitions, and produces less stable and more variable walking patterns; effects of age on degree of fatigue and rate of recovery from fatigue are inconsistent across studies, with these disparities likely due to differences in the fatigue protocols, study populations and outcome measures.</p> <p>Conclusion</p> <p>Taken together, the findings suggest that balance and functional task performance are impaired with fatigue. Future studies should assess whether fatigue is related to increased risk of falling and whether exercise interventions may decrease fatigue effects.</p
    corecore