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Abstract24

Seismic observations show the Earth’s inner core has significant and unexplained variation in seismic25

attenuation with position, depth and direction. Interpreting these observations is difficult without know-26

ledge of the visco- or anelastic dissipation processes active in hcp-iron in the inner core. Here, a previously27

unconsidered attenuation mechanism is observed in zinc, a low pressure analogue of hcp-iron, during small28

strain sinusoidal deformation experiments. The experiments were performed in a deformation-DIA com-29

bined with X-radiography, at seismic frequencies (∼0.003–0.1Hz), high pressure and temperatures up to30

∼80% of melting temperature. Significant dissipation (0.077 ≤ Q−1(ω) ≤ 0.488) is observed along with31

frequency dependent softening of zinc’s Young’s modulus and an extremely small activation energy for32

creep (⩽ 7 kJmol−1). In addition, during sinusoidal deformation the original microstructure is replaced33

by one with a reduced dislocation density and small, uniform, grain size. This combination of behaviour34

collectively reflects a mode of deformation called ‘internal stress superplasticity’; this deformation mech-35

anism is unique to anisotropic materials and activated by cyclic loading generating large internal stresses.36

Here we observe a new form of internal stress superplasticity, which we name as ‘elastic strain mismatch37

superplasticity’. In it the large stresses are caused by the compressional anisotropy. If this mechanism is38

also active in hcp-iron and the Earth’s inner-core it will be a contributor to inner-core observed seismic39

attenuation and constrain the maximum inner-core grain-size to ≲ 10 km.40

Key points41

• Zinc, a low pressure analogue for hcp-iron, deforms by internal stress superplasticity during small42

amplitude sinusoidal-strain deformation.43

• Internal stress superplasticity due to mechanical oscillations has not been previously reported.44

• Internal stress superplasticity is another attenuation mechanism that could be active in the Earth’s45

inner-core.46

Plane Language Summary47

The Earth’s inner-core is the most remote and inaccessible part of our planet. Knowledge of the inner-core’s48

structure comes from interpretation of the information held in seismic waves that have passed through the49

inner-core. These waves show measurable variation in wave speed and damping with depth. To investigate50

the wave damping in the inner-core we performed experiments that mimicked the passage of sesimic waves51

through zinc. Zinc was used as a low-pressure analogue because it has the same crystallographic structure52

as the iron in the inner-core. In these experiments we observed new behaviour in the zinc samples that can53

only be explained by the behaviour of different directions within the zinc crystal lattice. These we named54
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“elastic strain mismatch superplasticity” and if the same phenomena occurs in the Earth’s inner-core it could55

explain the seismic observations.56

1 Introduction57

The Earth’s solid inner core is the most remote and inaccessible part of our planet. Information encoded58

in the structure and composition of the inner core during its early solidification could reveal the timing and59

nature of the onset of Earth’s protective magnetic field, generated by convection in the liquid outer core, or60

even of changes in the way the mantle convects and drives surface dynamics (e.g. Aubert et al., 2008).61

The inner-core exhibits depth and azimuthal variation in both seismic wave speed (Sumita and Bergman,62

2015; Deuss, 2014; Woodhouse et al., 1986; Lythgoe et al., 2014; Irving and Deuss, 2011; Niu and Wen, 2001)63

and attenuation (e.g. Yu and Wen, 2006). The attenuation has both hemispherical (Cao and Romanowicz,64

2004) and depth variations (Suda and Fukao, 1990). Attenuation is parametrised as the seismic quality65

factor, Q, which can be thought of as the efficiency with which wave energy is transmitted. Using body66

waves (typical frequency 0.5 - 1.5Hz), Q has been estimated to be ∼200 just below the inner core boundary67

increasing to 1000–2000 at the center of the Earth (Doornbos, 1974). Significant regional variation in Q has68

been found to exist by Pejić et al. (2019) and Li and Cormier (2002), with a global mean Q1Hz ∼ 300. Using69

normal modes (frequency < 10mHz), Mäkinen et al. (2014) showed that attenuation in the inner core is70

directionally dependent with the North-South direction being both seismically faster and more attenuating71

than radial directions. The attenuation mechanism(s) in the inner-core is unknown. Postulated mechanisms72

include: the flow of trapped fluids (Singh, 2000; Fearn et al., 1981); diffusion-, dislocation- or elastically73

accommodated grain-boundary sliding (Jackson et al., 2000); and Zener relaxation, in which Fe atoms74

switch positions with vacancies and/or solute atoms as a result of the stress imparted by passing seismic75

waves (Mäkinen et al., 2014).76

The inner-core is very close to its melting temperature and the iron from which it is formed is widely77

accepted to be the hcp structure stable above 10GPa (e.g. Tateno et al., 2010), albeit diluted by light78

elements (Bazhanova et al., 2017; Fei et al., 2016; Antonangeli et al., 2018, 2010; Fiquet, 2001; Mao et al.,79

2012; Caracas, 2015; Sakamaki et al., 2016; Tagawa et al., 2016; Tateno et al., 2012, 2015; Prescher et al.,80

2015; Li et al., 2018). However, the experimental data needed to distinguish between potential inner core81

attenuation mechanisms does not exist because of the extreme conditions under which hcp-iron is stable.82

Deformation experiments on hcp-iron are limited to 1000K and 30GPa (T/Tm ∼ 0.4; where T is the83

temperature and Tm is the melting temperature, both in Kelvins, Merkel et al., 2004; Nishihara et al., 2023).84

The most recent study of the anelasticity of iron (Jackson et al., 2000) is limited to low pressures where iron85

adopts the body centred cubic (bcc) and face centred cubic (fcc) structures.86

To account for the limitations of pressures and temperatures that can be replicated in experimental87
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settings, low-pressure hcp analogues including zinc, titanium, magnesium and cobalt have been utilised as88

analogues for the inner core (Bergman et al., 2018; Kanitpanyacharoen et al., 2012). But even on analogues,89

experiments at high-homologous temperatures are rare (e.g. Bergman et al., 2018) and most studies are90

performed at low pressures and homologous temperatures (e.g. Jackson et al., 2000). Small amplitude,91

mechanical oscillation experiments performed on hcp metals at ambient pressure are generally at much higher92

frequencies than seismic waves (Wuttig et al., 1981; Aning et al., 1982; Takahashi, 1952), or infer dissipation93

from large strain creep tests (Li and Wagoner, 2021). The few mechanical studies at seismic frequencies94

attribute attenuation, at ambient pressure and low temperatures, in zinc to dislocation motion (Roberts and95

Brown, 1962). In general though, seismological, experimental and computational studies investigating inner96

core properties and chemistry, implicitly assume an absence of visco- or anelastic attenuation.97

Both seismologically and experimentally, attenuation, Q−1, is the inverse of the quality factor, Q, and98

is characterised by the loss of amplitude and energy of a wave as it passes through an imperfectly elastic99

medium. Under forced constant amplitude experiments Q−1 manifests as a phase lag between an applied100

stress and the strain response. It is an inherent property of anelastic and viscoelastic materials and arises101

due to the time dependent response to applied stress (Nowick and Berry, 1972). An undamped oscillator102

with no attenuation or energy loss has Q−1 = 0 (Q = ∞) and indicates an elastic (i.e. instantaneous103

and recoverable) response to stress. A finite Q indicates the operation of plastic strains, requiring time to104

manifest, that are unrecoverable. Each viscoelastic attenuation mechanism has characteristic frequency and105

amplitude dependent behaviours which are dependent on the temperature, pressure and microstructure of106

the sample. The microstructure in turn reflects the deformation and crystallization history of the sample.107

Comparison between a broad set of experimental results and seismic observations of dispersion (variation108

of wave velocity with frequency) and intrinsic attenuation (reduction in wave amplitude with distance) is109

therefore needed to understand attenuation in the Earth’s inner-core.110

In this contribution, we show how attenuation and microstructural data from hcp-zinc give new insights111

into inner core attenuation via a new mechanical model for grain scale behaviour. We measure the viscoelastic112

response of zinc, to sinusoidal loading, at high pressure and T/Tm up to 0.8; measure the microstructures113

of the recovered samples; interpret this data to understand the attenuation mechanisms active during small114

strain deformation and discuss its potential implications for the inner-core.115

2 Experimental Procedure116

The response of zinc relative to an elastic standard under small-amplitude sinusoidal loading, was measured117

using the experimental method of Li and Weidner (2007). Sinusoidal strains were applied to an experi-118

mental column consisting of a zinc sample and corundum elastic standard, whilst simultaneously acquiring119

X-radiographic images. Axial strains in the sample and elastic standard were determined by tracking dis-120
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Sample Experiment Methods and discussion Microstructure
corresponding to sample grain-size WBVl neighbour vs.

(µm2) (µm−1) random pair
Drawn Wire as supplied main text 3695 0.0013 similar
Wire, compressed cold compression Supplementary C, main text 891 0.0108 different
Wire, annealed high-pressure annealing Supplementary C, main text 1690 0.0095 similar
Wire, sinusoidal sinusoidal deformation main text 78 0.0041 similar
Wire, deformed constant strain-rate, step-wise deformation Supplementary D, main text 2731 0.0134 different
Powder, compressed cold compression Supplementary C, main text 85 0.0130 different
Powder, sinusoidal sinusoidal deformation Supplementary B, main text 138 0.0073 similar
Powder, deformed constant strain-rate, step-wise deformation Supplementary D 400 0.0143 similar

Table 1: Summary of samples discussed in this study and their microstructures. The first column gives the
names the samples are referred to in the text. The reported grain-sizes and WBVl values are the mean of
the values plotted in Figures 6 and S6.

placement of marker foils in the X-radiographs. Strain in an elastic standard is used as a proxy for applied121

stress, which combined with the sample strain and phase lag of the sample relative to that of the elastic122

standard, is sufficient to determine the viscoelastic response of the sample. This has been quantified with a123

mutli-parameter viscoelastic model and the recovered samples analysed for their microstructures to constrain124

their grain-scale deformation mechanisms.125

The main text discusses the sinusoidal deformation experiments on a zinc wire and powder. For brevity,126

the microstructure figures in the main text are those for the wire sample and equivalent figures for the powder127

are in the Supplementary Information. Further experiments exploring how sample history and experimental128

conditions affect microstructure are discussed in the Supplementary Information and listed in Table 1.129

2.1 Samples130

The wire sample was taken from a 1mm diameter high-purity zinc wire (99.9985% metal basis, Puratronic131

from Alfa Aesar). Samples were prepared by polishing to ∼1–1.3mm lengths, with flat parallel ends.132

Powder samples were made from fine-grained zinc powder (Sigma Aldrich, 99% metal basis, 75 µm particle133

size, that had not been stored in an inert atmosphere). High-resolution X-ray diffraction of the zinc powder134

shows it to contain trace amounts of two forms of ZnO (cubic and hexagonal) and at least one form of135

Zn(OH)2. The powder was pressed into ∼1mm long, 1mm diameter pellets in a steel die with flat-ended136

pins.137

The elastic standards were 1mm diameter solid rods of Alsint-23 corundum, from Alfa Aesar. Each piece138

was polished to <0.9mm long with flat parallel ends. Two pieces were used on either end of the zinc samples139

in the sinusoidal deformation experiments to keep the cell symmetrical. Disks of 25 µm thick platinum foil140

were used as markers between the samples and corundum standards as well as at the outer ends of the141

corundum standards.142
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2.2 Sinusoidal deformation experiments143

The viscoelasticity experiments were performed in the D-DIA (Durham et al., 2002; Wang et al., 2003)144

on beamline X17B2 at the NSLS, Brookhaven National Laboratory, New York with a white X-ray beam.145

Diffraction measurements were acquired using a 10-element energy dispersive X-ray diffraction detector146

(Weidner et al., 2010) which was calibrated using a corundum standard.147

The experimental assembly consisted of a 6.1mm cube of pyrophyllite baked to 1000◦C with a 3.0mm148

hole drilled through it normal to one face. Into this was placed, a crushable alumina sleeve (3.0mm outer,149

2.36mm inner diameter), a graphite furnace (2.36mm outer, 2.10mm inner diameter, 6.1mm long), and150

a boron nitride sleeve (1.8mm outer diameter, 1.0mm inner diameter, 3.0mm long). A sample stack,151

consisting of a zinc sample bracketed by two corundum pistons, was inserted into this boron nitride sleeve152

and the remaining space filled by crushable alumina. A C-type thermocouple inside a 0.8mm diameter153

4-bore alumina rod was inserted radially with its hot junction just inside the furnace but not touching the154

sample. A cross-section of the cell assembly is shown in Figure S2.155

The experiment was pressurised to the desired end-load over ∼2 hours. At pressure, diffraction patterns156

were acquired from both sample and standard. The zinc diffraction volume was in the centre of the sample157

and that of the corundum in the part closest to the zinc. The samples were then strained sinusoidally,158

with the smallest resolvable strains, at periods of 10, 30, 100 and 300 s by driving the D-DIA’s deformation159

pumps. During deformation, X-radiographs (e.g. Figure 1) were acquired using a yttrium aluminium garnet160

scintillator and a visible-light camera, for 10 nominal periods, at a rate of 20 or 40 images per period.161

For all but the 300 s data, two full cycles were allowed to elapse before data collection was started allowing162

the system to reach a mechanical equilibrium. After all data had been acquired at each temperature, the163

temperature was changed and the cycle repeated. Data was acquired during both increasing and decreasing164

temperature steps, to confirm that the results are not affected by the thermal history of the sample. During165

sinusoidal deformation, the total end-load on the system was kept constant, minimising any changes in pres-166

sure applied to the sample. Experiments were ended by simultaneously stopping the sinusoidal deformation167

and quenching the temperature. After the experiment had cooled to room temperature, the end load was168

reduced over a few hours while the position of the deformation rams was held constant, to prevent further169

deformation of the samples.170

2.3 Pressure Determination171

The pressure (P = volume strain × bulk modulus), in the sinusoidal deformation experiment was calculated172

from the energy dispersive corundum diffraction patterns. Although zinc is more compressible and should173

give more precise pressure estimates, above ∼200◦C its diffraction patterns ceased to reliably contain enough174

diffraction peaks to reliably determine volume strains. Any individual peaks would rapidly increase and175
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Figure 1: Example X-radiographs, from the (left) beginning and (right) end of the wire experiment. They
were acquired at (left) 4.8GPa and 25◦C and (right) 3.3GPa and 150◦C. The radiographs show both the
sample and corundum standard, as annotated on the right hand side. The red boxes are the positions of the
regions of interest tracked between images. The dark stripes at either side of the images are the shadows of
the tungsten carbide anvils. The scale of the image is 2µm/pixel.

decrease in relative intensity, as the zinc underwent rapid recrystallisation. Therefore the distinguishable176

corundum diffraction peaks were fit using the software package ‘Plot85’ and an independent unit cell volumes177

calculated for each of the detector elements. Volume strains were calculated independently for each of the178

detector element using the corresponding open-press unit cell volume, the corundum thermal expansion179

coefficients of Fei (1995) and the temperature reported by the thermocouple.180

Pressures were calculated, from the volume strain, assuming a bulk modulus of K0 = 254.28GPa along181

with pressure and temperature derivatives of K ′(= ∂K/∂P ) = 4.27 and ∂K/∂T = −0.0173GPaK−1 re-182

spectively. The bulk modulus and the temperature derivative are a linear fit to the Voigt-Reuss-Hill bulk183

moduli calculated using MSAT (the Matlab Seismic Anisotropy Toolbox, Walker and Wookey, 2012) from184

the elastic stiffnesses (cij) of Goto et al. (1989). The pressure derivative was calculated from the pressure185

dependencies of the elastic stiffnesses of Gieske and Barsch (1968) in the same manner, assuming the de-186

rivatives are linear at pressures greater than 1GPa. The pressure at each condition are the weighted mean187

and standard deviation of the values calculated from all the detector elements (Tables 2 and 3). Elastic188

stiffnesses were used, rather than an Equation of State, for internal consistency with subsequent Young’s189

moduli calculations (Section 2.5).190

2.4 X-radiograph analysis191

The X-radiographs were processed using the FoilTrack algorithm (Hunt, 2023), which was developed specially192

for this data set. It was developed because earlier algorithms used to process high strain (Dobson et al.,193

2012b; Hunt et al., 2010, 2009, 2019) and small-strain cyclic data (Dobson et al., 2008, 2010; Hunt et al.,194
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2012, 2011) were unable to provide sufficiently precise or coherent period, phase or amplitude values for195

the sample length changes. FoilTrack is a digital image correlation algorithm that treats complete series of196

images as a single, consistent sequence, while accounting for the known deformation applied to the sample.197

The period, phase and amplitude of the sinusoidal displacement for each region of interest are returned by198

the algorithm. These can subsequently be used to calculate the sinusoidal phase (Φ) and amplitude (A) of199

the length change in each sample and reference.200

During the experiment, the foil shadows adjacent to the zinc sample became broader as the platinum201

marker foil diffused into the zinc (Figure 1). To minimise the effect of this on the measurements, the regions202

of interest were positioned automatically around the marker foils. The regions of interest adjacent to the203

zinc sample (Figure 1, middle boxes) were centred over the maximum gradient (as interpolated by a spline)204

on the side of the foil away from the sample. Those not adjacent to the zinc sample (Figure 1, top and205

bottom red boxes) were centred over the minimum in a spline interpolation of the intensity profile and the206

width and depth of these remained very similar throughout the experiment. The radiographs exhibit very207

little change through the experiment (Figure 1) and any inferred changes in samples length are small.208

Sample strain caused by the sinusoidal deformation is defined as:209

ε = A/l (1)

where l is the length of the sample in the reference image, corrected for the thickness of the platinum foils.210

Assuming the corundum standard is elastic and isotropic, the frequency dependent, relaxed, Young’s211

modulus of the zinc sample is:212

EZn(ω) =
εAl2O3

εZn
EAl2O3

(2)

where ε is the sinusoidal strain amplitude (Equation 1) in the sample and reference and EAl2O3
is the elastic213

Young’s modulus of corundum. For each measurement, the Young’s modulus of corundum, EAl2O3 , is the214

Voigt-Reuss-Hill average of corundum’s elastic stiffnesses (cij), at the temperature of the thermocouple and215

the pressure calculated from the diffraction (Section 2.3). These calculations were performed using MSAT216

(Walker and Wookey, 2012) and the same elastic stiffnesses used to determine the pressure (Gieske and217

Barsch, 1968; Goto et al., 1989).218

The strain energy attenuation is (Cooper, 2002):219

Q−1 = tan(δ) = tan(ΦAl2O3
− ΦZn) (3)

where δ is the loss angle and is equal to the difference in phase of the length changes in the corundum220

standard (ΦAl2O3) and zinc sample (ΦZn) respectively.221
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kM ηM
kV

ηV

Maxwell Voigt

Figure 2: Schematic representations of Burgers models of viscoelasticity. Springs (labelled k) represent the
elastic components of the model and dashpots (labelled η) the viscous components; under axial deformation
kM ≡ E, the Young’s modulus. The Burgers model is formed of Maxwell and Kelvin models in series.

2.5 Viscoelastic models222

The time dependent, unrecoverable, response of viscoelastic media to cyclic deformation can be measured223

but to explain it a mathematical model is needed. The model must incorporate elasticity but also one or224

more plastic, dissipative, processes. Such models are constructed from combinations of springs and dashpots225

(e.g. Figure 2) which, depending on the model, may represent independently measurable properties. Each226

spring–dashpot model has different frequency-dependent behaviour that may also point to particular physical227

processes occurring in a sample (Lakes, 1999; Sundberg and Cooper, 2010; Nowick and Berry, 1972; Jackson228

et al., 2000; Faul and Jackson, 2015; Jackson, 2015; Banks et al., 2011; Gribb and Cooper, 1998). The229

models relate angular frequency, ω (= 2π/period), and stress, σ(t) = σ0 exp(ωt), to the strain response,230

ε(t) = ε0 exp(ωt− δ), by a loss angle, δ. For each model, the strain response can be obtained by integrating231

its behaviour over the stress history to compute the dynamic compliance, J∗(ω) (Nowick and Berry, 1972;232

Jackson, 2015). There is no specific spring–dashpot model for internal stress superplasticity. Consequently,233

a number of viscoelastic models were investigated and the Burgers model was found to best describe the234

data with physically reasonable values for the parameters.235

The Burgers model (Figure 2) is usually expressed in terms of: the unrelaxed compliance, JM (= 1/kM );236

the viscoelastic relaxation of the compliance, JV (= 1/kV ); the Maxwell viscosity, ηM ; and the retardation237

time, τV . Where τ is:238

τ = η/k (4)

The frequency dependent Young’s modulus, E(ω) (Equation 2) is the property measured under an axial

shortening regime. Substituting the Young’s modulus for k, the complex compliance can be expressed in

terms of the four independent model components, EM , ηM , EV and ηV (after Jackson, 2015):

J∗(ω) =
1

EM
+

1

EV (1 + iωηV /EV )
− i

ωηM
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Separating the real and imaginary components gives:

J1(ω) =
1

EM
+

1

EV (1 + ω2η2V /E
2
V )

(5a)

J2(ω) =
ωηV

E2
V (1 + ω2η2V /E

2
V )

− 1

ωηM
(5b)

where EM and EV are the respective spring constants of the Maxwell and Voigt components of the Burgers239

model and ηM and ηV are the corresponding dashpot viscosities (Figure 2).240

Using the expressions for J1 and J2, the frequency dependent Young’s modulus (equivalent to Equation241

2) is (e.g. Jackson, 2015):242

E(ω) =
√
J1(ω)2 + J2(ω)2 (6)

and the strain energy dissipation (equivalent of Equation 3) is:243

Q−1(ω) =
J2(ω)

J1(ω)
. (7)

The Burgers model was fit to the experimental E(ω) and Q−1(ω) data (Equations 2, 3) at each temperat-244

ure by simultaneously minimising the unweighted normalised residuals for both E(ω) and Q−1(ω) (Equations245

6 and 7). The parameters solved for in the fitting were the period (= 2π/ω) and the independent elastic (E)246

and viscous (η) components of the model (Equation 5). Standard errors on each parameter were returned by247

the least squares difference minimisation routine and have been propagated through the analysis as needed.248

Equations 5-7 describes the change in sample response with frequency. By assuming negligible pressure249

derivatives and a functional form for each of the 4 Burger’s model parameters, a single description of the data250

as a function of frequency and pressure can be made. of the Burgers model, it was possible to simultaneously251

fit all the data. A linear temperature dependency was assumed for EM . The viscosities (ηM and ηV ) were252

assumed to have Arrhenius temperature dependencies (ln η(T ) = a+Ea/RT) with an activation energy Ea.253

The temperature dependence of EV was less clear; a number of possible functions were tested for EV but an254

Arrhenius temperature dependence was eventually used because it both approximated the data and remained255

greater than zero. As with the temperature independent models, standard errors for each parameter of this256

model were returned by the minimisation routine.257

2.6 Microstructural analysis258

The experimental samples were mounted in epoxy resin and polished for analysis in the FEI Quanta 650259

field emission gun (FEG) scanning electron microscope at the University of Leeds. The final finish was a260

0.03 µm colloidal silica chemo-mechanical polish in an alkaline solution (Lloyd, 1987). Electron Back-Scatter261

Diffraction (EBSD) measurements were obtained using a 20 kV accelerating voltage, a spot size of 65 µm and262
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a working distance of 27mm. The step size was ∼1 µm except for an as-purchased wire sample in which it263

was ∼3.54 µm. The Kikuchi patterns were automatically indexed using Oxford Instrument’s AZtec software264

package. Zinc metal, ZnO, two forms of Zn(OH)2 and Al2O3 were listed as possible phases during indexing.265

Grains were reconstructed in MTEX (v5.5.1, Bachmann et al., 2010, 2011) using a 10◦ misorientation-266

angle for the grain-boundary threshold. Some of the samples retained significant surface scratching which267

influences the grain reconstruction. To account for this, data within grains affected by scratches were removed268

from the analysis and the grain-reconstruction rerun. The twin plane was identified from the annealed wire269

sample by finding the most common grain-grain misorientation relationships. Twin boundaries were identified270

in the samples and grains merged if the misorentation between adjacent grains was within 5◦ of the twin271

plane.272

Proxies for dislocation density and the relationship between neighbouring grains were calculated in the273

form of the Weighted Burgers Vector (WBV, Wheeler et al., 2009) and neighbour-pair and random-pair274

misorientation distributions (Wheeler et al., 2001) respectively in CrystalScape (v2.1, Wheeler et al., 2009).275

High angle boundaries, without an organised geometrically necessary dislocation structure, were excluded276

from WBV calculations using a misorientation threshold of 5◦ between pixels. Neighbour-pair misorient-277

ation angles were calculated for adjacent pixels that are separated by grain-boundaries as defined by the278

10◦ grain-boundary misorientation threshold. Random-pair distributions were calculated, as reference, for279

misorientations between 10 and 80◦; the upper threshold was utilised to remove the effect of twinning on the280

distribution comparison.281

3 Results282

A number of sinusoidal deformation experiments were performed for this study, at up to 4.8GPa, 400 ◦C and283

T/Tm < 0.8; a full list of the complimentary experiments and samples is in Table 1. For brevity, figures284

in the main text show the results from wire experiment which exemplify the key results; equivalent figures285

for the powder sample are included in the supplementary information (Section B) and are cross-referenced286

in the main text.287

3.1 Sinusoidal deformation experiments288

The frequency-dependent Young’s moduli, E(ω), decreases with oscillation period (Figures 3a, S3a) and289

dissipation, Q−1(ω), increases in a manner consistent with a dissipation peak over a broad background290

(Figures 3b, S3b). With decreasing period, data shows less attenuation (Q−1(ω) → 0 as ω → ∞) and291

the frequency dependent elastic modulus approaches the elastic, infinite frequency, modulus (E(ω) → E as292

ω → ∞). Data collected before and after the maximum temperature do not show significant offsets (open vs.293
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filled symbols, Figures 3, S3), implying sample history has negligible effect on the measurements. There is294

no resolvable change in the sinusoidal strain magnitude within any of the sinusoidal measurements. Typical295

strain amplitudes for both the sample and standard are ∼ 6 × 10−4 and ∼ 1 × 10−4 respectively (Tables296

2, S1). Strain amplitudes in the corundum standard indicates axial stress amplitudes, in the wire sample,297

ranging from 22 to 84MPa, with a mean of 54MPa.298

The absolute Q−1(ω) values in this study (0.49 > Q−1(ω) > 0.05) are within the range of values reported299

in other studies of viscoelasticity and are slightly larger than those measured in iron and steel at similar300

homologous temperatures (0.33 > Q−1(ω) > 0.001; Jackson et al., 2000) but larger than Q−1 values determ-301

ined for the Earth’s inner core (Q−1 ≲ 0.005, e.g. Doornbos, 1974; Pejić et al., 2019; Li and Cormier, 2002).302

The range of Q−1(ω) values here (<1 log unit) though are smaller than in previous studies which typically303

range over more than 1.5 log units.304

The E(ω) data fall between the maximum and minimum possible elastic Young’s moduli (dashed black305

lines in Figures 3a, S3a) and are predominantly smaller than the isotropic average elastic Young’s moduli306

(solid black lines in Figures 3a, S3b). The elastic moduli were calculated in MSAT (Walker and Wookey,307

2012) for the mean pressure of the experiment from the ambient condition and temperature dependencies308

of the elastic stiffnesses (cij) of Alers and Neighbours (1958) and the pressure derivatives of Srinivasan and309

Rao (1971), as compiled by Ledbetter (1977).310

3.2 Viscoelastic modelling311

The Burgers’ model was fit to the E(ω) and Q−1(ω) data, at each temperature separately (Table 3, symbols312

in Figure 4). By assuming temperature dependencies for each Burgers model parameter, the entire data set313

could be fit with a single model (lines in Figures 3, S3 and 4). The E(ω) and Q−1(ω) data, both at individual314

temperatures and as a whole, are well described by the Burgers model (Figures 3, S3), which reproduces the315

dispersion peak or plateaux in Q−1(ω) and changes in E(ω) in temperature and period. The fits though,316

may systemically overestimate the size of the dissipation peak near 30 s in the wire sample (Figure 3) and317

underestimate it in the powder sample (Figure S3). This is interpreted as a reflection of differing trade offs in318

the fitting. The Maxwell relaxation times are all within the experimental periods, while the Voigt retardation319

times are all smaller than the smallest experimental period (Table 3), consistent with the observed softening320

behaviour. The coefficients from the single model with the assumed temperature dependencies match those321

calculated independently at each separate temperature (Figure 4).322

The parameters returned by the independent fits at each temperature have physically reasonable values323

(Table 3) and vary systematically with temperature (Figure 4). Alternative viscoelastic models do not324

replicate the features of the data, or do so with physically unreasonable parameters. Two component models325

of viscoelasticity (i.e. Maxwell or Voigt models, Figure 2) are unable to reproduce gradient changes in Q−1(ω)326
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Figure 3: (a) Frequency dependent Young’s modulus, E(ω) (b) dissipation, Q−1(ω), from the wire sinusoidal
deformation experiment; the equivalent plots for the wire sample are in Figure S3. The open symbols are the
data collected before the maximum temperature of the experiment and the filled symbols after; for the order
of the data collection see Table 2. Dotted lines connect the data to the corresponding point in the fitted
plane. Error bars have been excluded for clarity; the mean errors in E(ω) and Q−1(ω) are 13.9GPa and 0.03
respectively. The solid lines are the Burgers model fit to all the data and is plotted at the nominal periods
and temperatures of the measurements. In (a) the heavy black lines in the back planes are the elastic Young’s
modulus calculated from a Voigt-Reuss-Hill average of the zinc cij and the dashed lines are the maximum
and minimum possible elastic Young’s moduli from the cij . All lines of constant period terminate at the
melting temperature. Note that the directions of the temperature and period axes are reversed between
parts (a) and (b).

data (Faul and Jackson, 2015) and require frequency dependent viscosities. The Andrade model (Cooper,327

2002; Sundberg and Cooper, 2010) produces physically unreasonable parameters; the model’s ‘micro-creep328

coefficient’ returned fitted values > 200. Much greater than the accepted value of ∼ 1/3, which has been329

observed both in zinc (Cottrell and Aytekin, 1947) and other materials (Sundberg and Cooper, 2010). The330

limited number of periods prevented fitting more models with more parameters, e.g. Extended Burgers’331

model (Jackson, 2015).332

Over both experiments there is a substantial reduction in pressure (Tables 2, S1) but there is no significant333

offset between the E(ω) and Q−1(ω) values, from before and after the maximum temperature in each334

experiment (open vs. filled symbols in Figures 3, S3). Nor is there any robust difference in Burgers’ model335

parameters (Figure 4). Sample history and the relatively large pressure change over the experiment do not336

therefore exert meaningful influence on the measured values.337

For both the wire and the powder, the predicted EM show very good agreement with those expected338

for a random orientation (Figure 4a). The calculated ∂EM/∂T values are within 1.5 standard errors of339

each other and within two standard errors of previous elastic measurements’ temperature derivatives (Figure340
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Group Temperature Pressure Period Strain amplutide, ε Phase Lag EAl2O3
E(ω) Q−1(ω)

Zinc Al2O3 Zinc-Ref
(◦C) (GPa) (s) ε × 106 ε × 106 (degrees) (GPa) (GPa)

1 25 4.8(8) 300.010(62) 687(5) 188(7) 12.4(28) 425.4 116(15) 0.22(5)
100.437(1) 658(4) 198(5) 4.3(5) 128(12) 0.08(1)
29.961(3) 545(2) 168(2) 4.8(12) 131(7) 0.08(2)
10.020(2) 261(2) 84(2) 5.5(18) 138(10) 0.10(3)

2 100 4.8(8) 299.453(49) 783(5) 172(6) 21.6(25) 422.5 93(14) 0.40(5)
100.003(1) 693(6) 175(7) 9.6(8) 107(16) 0.17(1)
30.200(5) 554(3) 167(3) 6.5(13) 128(7) 0.11(2)
30.122(2) 558(2) 164(2) 7.0(9) 124(5) 0.12(2)
9.995(2) 264(2) 84(2) 4.4(17) 134(9) 0.08(3)

3 200 4.2(4) 299.801(37) 870(4) 193(4) 17.2(17) 414.7 92(9) 0.31(3)
100.064(1) 820(3) 183(3) 11.0(3) 93(7) 0.19(1)
29.891(4) 645(3) 145(3) 9.6(16) 93(9) 0.17(3)
9.977(2) 300(2) 79(2) 7.2(20) 110(11) 0.13(4)

4 300 4.2(4) 300.021(105) 883(12) 164(11) 21.1(54) 409.4 76(28) 0.39(10)
100.922(2) 840(4) 125(9) 21.5(17) 61(29) 0.39(3)
29.913(3) 675(2) 108(4) 13.1(21) 65(14) 0.23(4)
9.983(2) 308(1) 66(3) 6.9(28) 87(17) 0.12(5)

5 400 4.1(6) 299.907(65) 922(6) 99(12) 26.0(76) 403.5 43(48) 0.49(14)
99.372(1) 875(5) 92(8) 17.9(18) 42(35) 0.32(3)
29.960(3) 712(2) 89(4) 18.7(25) 51(16) 0.34(5)
10.039(2) 331(2) 55(3) 11.6(32) 67(20) 0.21(6)

6 250 3.4(6) 300.868(57) 852(7) 127(9) 16.9(48) 408.2 61(30) 0.30(9)
99.911(1) 823(4) 142(5) 18.6(7) 70(14) 0.34(1)
9.994(2) 307(2) 75(3) 11.9(23) 100(14) 0.21(4)

7 150 3.3(9) 300.170(245) 802(29) 183(33) 14.1(126) 412.8 94(75) 0.25(23)
100.343(1) 764(10) 186(10) 10.0(9) 101(22) 0.18(2)
30.036(4) 638(4) 152(4) 8.6(17) 98(11) 0.15(3)
9.967(2) 308(3) 89(3) 6.4(21) 120(12) 0.11(4)

Table 2: Experimental conditions and strain data from the wire sample in this study; for the powder sample
the equivalent values are in Table S1. The data are presented in the order in which they were collected. The
values of EAl2O3

are those used in the calculations and were calculated as described in the text. Numbers in
parentheses are the standard error in the last significant figure.

4, Table 4). The value of ∂EM/∂T from the wire is greater than that expected from the previous elastic341

measurements, this is likely due to the minor geometrical imperfection of the sample.342

The creep viscosities, ηM , for the wire and powder agree with each other but poorly with values from343

previous deformation studies (Figure 4b). They are significantly less temperature dependent than previous344

dislocation creep experiments (Figure 4, Murthy and Sastry, 1982; Tegart and Sherby, 1958) but are always345

much greater than the superplastic viscosity of zinc (η < 2700GPa s above 200K, Wu et al., 1987; Kitazono346

et al., 2001).347

The activation energy for creep (Ea,ηM
) in the wire is 6.8±1.1 kJ/mol and in the powder is 4.2±2.0 kJ/mol.348

These values are within 1.2 standard errors of each other and are significantly smaller than the activation349

energies for creep by dislocation climb or basal slip in zinc (88 and 159 kJ/mol respectivley, Tegart and350

Sherby, 1958), self-diffusion (91.3 - 101.7 kJ/mol, Chabildas and Gilder, 1972; Shirn et al., 1953), grain351

boundary diffusion (60.7 kJ/mol, Wajda, 1954), twinning (29.7±10 kJ/mol, Cooper and Washburn, 1967) or352

grain boundary sliding (40−100 kJ/mol, Watanabe et al., 1984). Instead they are closer to consistency with353

the low activation energy for creep observed by Matsunaga et al. (2010) and Roth et al. (1974) and models354

of internal stress superplastic creep (Kitazono et al., 1999a,b, 2001; Wu et al., 1987). The studies referenced355

here were made with temperatures ranges of 100–300 ◦C and mostly with a maximum temperature below356
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Figure 4: Burgers model parameters plotted against temperature for the wire (blue squares) and powder (red
triangles) samples: a. Maxwell Young’s modulus, EM ; b. Maxwell viscosity, ηM ; c. Voigt elastic modulus,
EV ; and the Voigt viscosity, ηV (see Equation 5, Figure 2). The symbols are the Burgers fit to the data
at each temperature only; the open symbols are the data collected before the maximum temperature of the
experiment and the filled symbols after. Lines are from the fit to all the data assuming the temperature
derivatives listed in Table 4; they are not fits to the symbols. In a.: the solid black line is the isotropic elastic
Young’s modulus of zinc at the average pressure of the wire experiment (4.1GPa) and the dashed lines
are the maximum and minimum possible elastic Young’s moduli calculated in MSAT (Walker and Wookey,
2012). In b.: the solid black line, dashed black line and grey area are viscosities (η = σ/ϵ̇) derived from
the experiments in dislocation-controlled creep regimes by Tegart and Sherby (1958), Thompson (1955) and
Murthy and Sastry (1982) respectively. There are no comparable previous measurements for parts c. and d.

350 ◦C. The temperature range in this study is more than 25% larger and our maximum temperature is357

higher, reinforcing the robustness and unusualness of our activation energies.358

The functional forms of the Voigt elements of the model (Figure 4c,d) are less clear than those of the359

Maxwell elements, due to greater scatter of the Burgers model parameters. Although the values from each360

sample overlap, the agreement between these is not as good as those of the Maxwell components and this361

may be due to subtle differences between the samples. The physical processes behind EV and ηV are not362

clear and any interpretation requires assumptions about or knowledge of the dissipation mechanism. This363

prevents any comparison with previous measurements.364

3.3 Experimental Microstructures365

The Burgers model does not of itself identify the dissipation mechanism active in the experiments. Un-366

derstanding the viscoelastic dissipation mechanism therefore requires understanding any microstructural367

differences between the sinusoidally deformed samples and the other deformation states produced during our368
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Group Temperature Pressure Burgers’ model parameters Relaxation time Retardation time
EM ηM EV ηV τM τV

(◦C) (GPa) (GPa) (103 GPa s) (GPa) (GPa s) (s) (s)
Wire sample

1 25 4.8± 0.8 149± 10 30.9± 2.3 729± 80 1342± 310 208± 16 1.8± 0.4
2 100 4.8± 0.8 129± 3 13.1± 0.8 741± 49 2933± 351 101± 6 4.0± 0.5
3 200 4.2± 0.4 120± 4 13.8± 0.8 344± 19 1566± 139 115± 7 4.6± 0.4
4 300 4.2± 0.4 93± 9 7.9± 1.9 163± 39 1557± 425 85± 21 9.5± 2.6
5 400 4.1± 0.6 76± 4 4.5± 0.3 104± 10 575± 90 60± 5 5.5± 0.9
6 250 3.4± 0.6 117± 6 12.0± 1.9 119± 12 956± 98 102± 17 8.0± 0.9
7 150 3.3± 0.9 123± 7 17.9± 1.5 382± 27 1869± 185 145± 12 4.9± 0.5

Powder sample
1 28 2.6± 0.6 127± 2 29.1± 3.7 818± 51 4026± 266 230± 29 4.9± 0.3
2 182 3.7± 0.7 121± 5 10.1± 1.7 338± 35 1113± 289 84± 14 3.3± 0.9
3 227 3.6± 1.5 96± 1 9.1± 2.1 382± 100 3961± 302 95± 22 10.4± 0.8
4 279 3.7± 0.5 108± 3 12.0± 1.9 364± 28 1521± 186 111± 18 4.2± 0.5
5 325 3.5± 0.7 100± 5 3.7× 108 ± 0.0 151± 18 2833± 181 3.7× 109 ± 8.5× 107 18.8± 1.3
6 377 3.4± 0.4 94± 3 8.8± 3.0 303± 77 2269± 234 94± 32 7.5± 0.8
7 34 2.5± 0.6 132± 4 12.6± 3.0 575± 120 3844± 375 95± 23 6.7± 0.7
8 256 2.7± 3.6 114± 5 4.7± 0.9 733± 158 1329± 743 41± 8 1.8± 1.0
9 120 2.9± 0.8 122± 1 18.7± 0.6 1082± 53 3248± 488 154± 5 3.0± 0.5

Table 3: Burgers model fits to the data for each temperature condition. The values are plotted in Figure
4. The errors on the values are those reported by the minimisation algorithm used for the fitting. The
relaxation and retardation times were calculated using equation 4.

Constant Wire Powder
Temperature dependency Intercept Slope Intercept Slope

(T , ◦C) (p0) (p′) (p0) (p′)
EM = p0 + p′.T 142.1± 12.8GPa -0.159± 0.038GPa K−1 118.7± 19.7GPa -0.057± 0.076GPa K−1

ηM = exp(p0 + p′/R(T + 273)) 7.6± 0.3 6803± 1052 J mol−1 K−1 8.1± 0.6 4206± 1954 J mol−1 K−1

EV = exp(p0 + p′/R(T + 273)) 3.1± 0.2 1158± 104 J mol−1 K−1 6.0± 0.6 215± 252 J mol−1 K−1

ηV = exp(p0 + p′/R(T + 273)) 5.9± 0.2 5117± 974 J mol−1 K−1 7.9± 0.5 -23± 1849 J mol−1 K−1

Table 4: Temperature dependent Burgers model parameters fit to E(ω) and Q−1(ω) derived from the
measurements in Table 2. The models are plotted in Figures 3, S3 and compared to the independent
temperature fits in Figure 4.

experiments (Table 1).369

Significant changes between the initial and sinusoidal microstructures occur in both the wire (Figures370

5, 6, S1) and powder samples (Section B, Figures S4, S5, S6). Sinusoidal deformation of the wire sample371

results in a microstructure which has a median grain-size an order of magnitude smaller than the initial,372

compressed, annealed or deformed samples (Figures 5di, 6a, Table 1). Sinusoidal deformation of the powder373

sample results in a significant increase in grain-size (Figures S4, S6) and a final microstructure that is374

remarkably similar to that of the wire. The sinusoidally deformed samples also have weaker crystallographic375

preferred orientation than all other states of deformation (Figures 5dii, S4dii). There is a close correlation376

between the nearest-neighbour and random-pair misorientation distributions in both sinusoidally deformed377

samples (Figures 6c, S6c) which is indicative of little or no retained crystallographic relationship between378

neighbouring grains. This and the significant changes in grain-size indicate that the majority, if not all, of379

both samples has recrystallised. Extensive recrystallisation in the samples is further supported by diffraction380

from the zinc, which above 200 ◦C is rapid (Sections 2.3, D). The recovered sinusoidal grain-size is also more381
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homogeneous, with fewer large or small grains, than in the other samples. There are a small number of382

quadruple-grain junctions between the approximately equant grains which is consistent with grain boundary383

sliding. The weighted Burger’s vector length (WBVl) in this sample is unevenly distributed; some grains have384

uniformly low WBVl, whilst others have distinctly higher WBVl (Figures S1d, S5d). These microstructures385

contain all the features commonly observed in super-plastically deformed alloys, namely: equitaxial grains;386

a low occurrence of low-angle grain boundaries; evidence of grain-boundary sliding (e.g. quadruple-grain387

junctions) and large fraction of recrystallised grains (Myshlyaev et al., 2022; Liu et al., 2012; Nuttall and388

Nicholson, 1968; Zou et al., 2024).389

This contrasts with the microstructures of the compression, annealed and deformated samples (Figures390

5, 6, S4, S6). The grain-size of these samples is highly variable and they contain higher WBVl values that391

form distinct planar regions within grains indicative of subgrain boundaries (Figure S1). The compressed392

and deformed samples also have excess low angle neighbour-pair misorientations consistent with dislocations393

accumulating into sub-grain walls and ultimately, high-angle grain-boundaries. In addition, distinct twins394

were recognised with the grains and the twin plane identified as {101̄2}, consistent with previous observa-395

tions (e.g. Kanitpanyacharoen et al., 2012; Liu et al., 2020). Overall our deformed samples’ microstructure396

(Table 1) is constistent with other constant strain-rate deformation experiments (e.g. Bergman et al., 2018)397

and dislocation creep plus ‘continuous dynamic recrystallisation’ as the dominant deformation mechanism398

(Gourdet and Montheillet, 2003; Montheillet and Jonas, 2003).399

The microstructures (Figures 5) themselves contain no evidence on the speed of their reconstruction. A400

rapid transformation of the microstructure is implied by (a) the absence of a transient in amplitude during401

the sinusoidal deformation and (b) the rapid changes in microstructure following increases in strain-rate or402

temperature during the stepped strain-rate experiment (Section D). The rapid response of the microstructure403

to applied conditions coupled with the comparable microstructures in the wire and powder sinusoidal samples404

implies the formation of a quasi-equilibrium grain-size and an important role for grain-boundary sliding in405

the dissipation mechanism.406

4 Discussion407

This study has measured the response of zinc wire and zinc powder samples to small amplitude, axial,408

sinusoidal deformation. Although sinusoidal compression experiments are not able to observe superplasticity409

in the normal sense (i.e. hyper-extension of the sample before failure) the observations are all consistent410

with a superplastic deformation mechanism and a steady-state grain-size during sinusoidal deformation. In411

the absence of sinusoidal deformation the samples deform by dislocation creep.412

The strains in the sample and standard (typically ∼ 6 × 10−4 and ∼ 1 × 10−4 respectively) were kept413

as small as possible while still being resolvable with the available experimental setup. The maximum axial414
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Figure 5: EBSD analysis of the samples, showing the grain and fabric evolution in the wire samples; the
equivalent plots for the powder samples are in Figure S4. Part a. drawn wire, b. after compression, c. after
annealing, d. after sinusoidal deformation at elevated temperatures and after deformation. Parts i. are
EBSD maps coloured by orientation and parts ii. are 1-point per pixel, antipodal pole figures all plotted
on the same multiples of uniform distribution colour scale. White areas in the EBSD maps are where the
sample was not indexed or data removed from the analysis; the linear white features in b and c are scratches.
The sample cylinder axis and applied strain are vertical in the figure (d.-e.). For details of the compression,
annealing and deformation experiments see Supplementary Sections C and D.
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strain under which the response of zinc to sinusoidal strain is linear has not been measured here but under415

pure shear is approximately 5×10−5 (Burdett and Wendler, 1976). The strains here are also large compared416

to the strains used in previous low-pressure anelastic measurements (2× 10−6 – 2× 10−5, e.g. Jackson et al.,417

2000). Axial stresses inferred from the corundum strain (22 to 84MPa) are significantly larger than the418

0.3MPa maximum shear stress of Jackson et al. (2000). It is therefore possible that the samples are not in419

the linear anelastic regime, and would have an amplitude dependent response to strain.420

It is generally assumed that for viscoelastic models (e.g. Burgers model) to be physically meaningful the421

microstructure must be constant. Instead, here the sinusoidal deformation completely reforms the micro-422

structures (Figures 5, 6, S4, S6), which transform from initial diversity to a superplastic-style microstructure423

(e.g. Myshlyaev et al., 2022; Liu et al., 2012; Nuttall and Nicholson, 1968; Zou et al., 2024). This is in con-424

trast to the non-sinusoidal samples and other studies (e.g. Bergman et al., 2018) in which the samples retain425

elements of their original microstructure. The recovered microstructures and lack of well resolved differences426

in the Burgers models points towards the sample histories (i.e. wire vs. powder) not having substantial427

effects on the dissipation. Instead, under sinusoidal deformation, the microstructure is dominated by the428

experimental conditions and overwrites the preceding history.429

The change in microstructure does not though preclude the validity of the Burgers model. The strong430

correspondence between the values of EM and previous elastic measurements (Figure 4) supports the reas-431

onableness of the Burgers model. The creep activation energy (ηM , 6.8±1.1 and 4.2±2.0 kJ/mol for the wire432

and powder respectively) is significantly smaller than previously measured values for steady-state creep.433

However, these values can be explained by a combination of ‘internal stress superplasticity’, grain-boundary434

sliding and a temperature dependent steady-state grain-size.435

4.1 Internal stress superplasticity436

Superplasticity is a phenomenon in which metals and ceramics undergo hyper-extension in tensile tests437

(Sherby and Wadsworth, 1985). ‘Internal stress superplasticity ’ is a particular form of superplasticity in438

which composites and hcp-metals with sufficient anisotropy exhibit superplasticity in response to thermal439

cycling (∼50K amplitude; Pickard and Derby, 1991; Kitazono et al., 1999a, 2001; Lobb et al., 1972; Wu440

et al., 1987; Roth et al., 1974; Schuh and Dunand, 2002). Internal stress superplasticity is further subclas-441

sified according to the origin of the internal stresses: transformational superplasticity is caused by phase442

transitions; Coefficient of Thermal Expansion (CTE)-mismatch superplasticity by anisotropic thermal ex-443

pansion of a single phase and Composite CTE-mismatch superplasticity by differential thermal expansion444

of multi-phase assemblages (Kitazono et al., 1999b). Models of internal stress superplasticity postulate a445

“diffusion-controlled dislocation-creep deformation mechanism” that incorporates the effects of anisotropic446

internal stress on the motion of dislocations: promoting dislocation movement in some grains/directions and447
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inhibiting it in others (Wu and Sherby, 1984). The effects of internal stress superplasticity in the deform-448

ation mechanism are reduced but not eliminated when the grain-size is a significant fraction of the sample449

volume (Pickard and Derby, 1991). Overall though, internal stress superplasticity is not well understood,450

the literature is not extensive and the theory is incomplete.451

Nevertheless, consistent with the observations here, internal stress superplasticity has a lower activation452

energy for creep (Schuh and Dunand, 2002). This is explained in conceptual models by the activation energy453

containing a factor of 1/n, where n is the stress exponent for dislocation creep. In zinc, n ≥ 4 which will454

reduce the activation energies from those for dislocation-mitigated creep mechanisms but this factor alone455

is not enough to match our activation energy with previous measurements.456

However, here we also observe reformation of the microstructure which points to additional factors that457

can also reduce the measured activation energy. The uniform and converged grain-sizes in the sinusoidal458

samples (Figures 5, S4) and the rapid-grain growth in the annealed and deformed samples combine to imply459

that the sinusoidal deformation prevents grain-growth above a critical size and that sliding along grain-460

boundaries is an important part of the dissipation mechanism. Grains that are larger than this critical size461

experience increases in internal stress that are sufficient to trigger grain-size reduction. Grain-size reduction462

occurs by dislocations accumulating into sub-grain boundaries and then into new grains, consistent with463

theories of internal stress superplasticity. Grain-boundary sliding reorganises these new grains, removing464

any excess low-angle misorientation pairs; just as is observed here in the sinusoidal microstructures (Figures465

6c and S6c). Interface energy provides an opposite driving force to increase average grain size, by the466

elimination of small grains. Thus, competition between internal-stresses and interface energy, coupled with467

grain-boundary sliding, results in a uniform, steady-state grain-size that is determined by the relative strength468

of driving forces. The relative strength of the driving forces is determined by the temperature and the469

amplitude of the applied sinusoidal strain. Changes in either of these will alter the balance of force and470

therefore the steady-state grain-size. Higher temperatures increase the relative interface energy and therefore471

the steady-state grain-size.472

Larger grain-sizes have slower deformation rates when deforming by grain-boundary sliding (e.g. Korla473

and Chokshi, 2014) and/or diffusion creep (Raj and Ashby, 1971). Deformation at higher temperatures,474

with a larger grain-size, is therefore slower than would be excepted for a constant grain-size. An increase in475

grain-size with temperature therefore results in a smaller apparent activation energy. Here the temperature476

dependent steady-state grain-size that therefore results in an activation energy that is smaller than the477

activation energy for the physical processes active in the sample (Table 4). We therefore conclude that478

a combination of internal stress superplasticity, grain-boundary sliding and a steady-state grain-size are479

responsible for the very low activation energies of ηM .480

Moreover, the small range of Q−1(ω) in both the wire and the powder samples (Table 3) is consistent with481
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a varying grain-size which focuses the dissipation peak in the parameter space of the data. This agrees with482

previous studies that showed superplastic metals have enhanced dissipation relative to their non-superplastic483

form (Mart́ınez-Flores et al., 2009; Park et al., 2002).484

These conclusions are only valid though if internal stress superplasticity is activated within the zinc485

samples. Internal stress superplastic is activated when the internally generated stresses are larger than the486

externally applied stress but it has not previously been reported in mechanically oscillating conditions. The487

magnitude of anisotropy is a crucial factor in the development of internal stresses. Coefficient of Thermal488

Expansion-mismatch superplasticity has previously been observed in zinc (Wu et al., 1987; Roth et al.,489

1974) and depends on significant anisotropy of thermal expansion to generate internal stress. In zinc, the490

thermal expansion is ∼5.0 times larger in the ⟨112̄0⟩ (or a) than the [0001] (or c) crystallographic direction491

(Nuss et al., 2010). In the thermal cycling regime (±50K), the expected axial strains are εa ∼ 0.0012 and492

εc ∼ 0.0062. For mechanical strain, the axial compressibilities are the equivalent physical property; the ratio493

of which in zinc is ∼ 3.2. Under the conditions of these experiments (± ∼54MPa) strains of εa ∼ 0.0007,494

εc ∼ 0.0022 are expected. The equivalence of thermal expansion and compressibility are further supported495

by observations of significant internal stresses generated during both compression (Gelles, 1966; Davidson496

et al., 1965) and cooling of zinc (Leineweber et al., 2009).497

Although the strains here are smaller than in the thermal cycling experiments, the reformed microstruc-498

ture together with the small activation energy, strongly indicates that (athermal) small strain sinusoidal499

deformation has activated internal stress superplastic deformation in our samples. This previously unrecog-500

nised form of internal stress superplasticity generates internal stress due to the anisotropic compressibility501

of a single phase which we name here as ‘elastic strain mismatch superplasticity’. Thus it is comparable502

to, but distinct from, the preceding three types of internal stress superplasticity, namely: transformational-,503

Coefficient of Thermal Expansion mismatch- and Composite CTE-mismatch-superplasticity (Kitazono et al.,504

1999b).505

4.2 Inner Core dissipation506

This study and Elastic strain mismatch superplasticity have consequences for our understanding of the507

Earth’s inner-core. The observations here contrast with previous arguments that hcp metals are “quite508

elastic” (e.g. Belonoshko et al., 2019). Instead, the results show that hcp-zinc samples exhibit significant509

deviations from purely elastic behaviour and have similar magnitude of dissipation to that observed in bcc510

and fcc-iron (Jackson et al., 2000).511

Most hcp-metals, including hcp-iron, are though less anisotropic than zinc (e.g. Takemura, 2019; Tro-512

mans, 2011) and it is not known how ubiquitous internal stress superplasticity is in hcp-metals. But at the513

homologous temperatures of the inner-core (T/Tm ≲ 1) dynamic recrystallisation will be extremely rapid.514
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The inner-core will therefore respond quickly to even small changes in stress, making internal stress super-515

plasticity in the inner-core conceivable. When it does occur, the magnitude of any superplastic response will516

depend on the anisotropy and how quickly the material recrystallises in response to stress.517

Assuming that this phenomena does occur in hcp-iron and the Earth’s inner-core, even the smallest estim-518

ates of inner-core grain-size (e.g. Bergman, 1998) are significantly larger than is present in our experiments.519

However, Pickard and Derby (1991) showed that the effects of internal stress superplasticity are reduced but520

not eliminated when the grain-size approaches that of the sample volume; this reduction will also decrease,521

but not eliminate, the associated dissipation. Therefore as long as the grain-size is less than the wave length522

of the seismic waves (c. 1–10 km) internal stress superplasticity could act to dissipate the seismic waves.523

Changes in inner core Q−1 (Doornbos, 1974; Suda and Fukao, 1990; Pejić et al., 2019; Li and Cormier, 2002)524

could therefore reflect the spatial variability of grain-size and/or grain-orientation, which will control the525

impact of internal stress superplasticity mechanisms on seismic attenuation.526

5 Conclusions527

The high-pressure response of zinc wire to sinusoidal stress at seismic frequencies and up to T/Tm ∼ 0.8528

have been measured and show that the hcp metal zinc has significant dissipation at seismic frequencies.529

The experiments show that significant dissipation occurs without the need for a fluid phase or significant530

impurities; instead the strain is accommodated by elastic strain mismatch superplasticity. This is a form of531

internal stress superplasticity controlled by anisotropic compressibility in the sample.532

The micromechanical data are best reproduced by a simple Burgers model (Equation 5). The elastic533

components of the model (EM ) show a good correspondence to previous studies (Figure 4). The activation534

energy for creep (Ea,ηM
) is much lower than previous studies have found but is consistent with an activation535

energy for internal stress superplasticity combined with a varying grain-size. The values of EV and ηV are536

less well constrained and do not simply correspond to a distinct physical process. It is therefore probable537

that the Burgers model is too simplistic to properly describe the dissipative processes active in the sample538

but there is not sufficient data to warrant the use of more complex models. Nevertheless, the experiments539

here show that significant viscoelastic softening occurs at high pressure and temperature in zinc.540

The grain size is inferred to change throughout the experiments in response to the temperature and541

mechanical cycling conditions, which overwrites the initial fabric leading to the convergence of grain size and542

WBVl in initially very different samples. This contrasts with complimentary constant strain-rate deformation543

experiments under similar conditions which deform by dislocation creep and in which the samples retain hall544

marks of the original microstructure. The switch in deformation mechanism is consistent with thermal545

cycling experiments in which the constantly varying stress induces a change in deformation mechanism from546

dislocation creep to ‘Coefficient of thermal expansion-mismatch superplasticity’.547
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With internal stress superplasticity, the internal stresses are large compared to the applied stress. It548

is active under cyclic conditions and changes the deformation mechanisms even when the grain size is a549

substantial fraction of the gauge volume (Pickard and Derby, 1991). Anisotropic compressibility is a feature550

of hcp metals and it is therefore possible that hcp-Fe will also exhibit internal stress superplasticity under551

sinusoidal straining. Where active in the inner-core, internal stress superplasticity limits the maximum552

possible grain-size to < 1–10 km and may explain regional variations in Q−1 by changes in grain-size. More553

work is needed in order to fully understand this deformation mechanism and its application to the inner-core,554

but it should be considered when interpreting the inner core’s seismic velocity structure.555
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Mäkinen, A. M., Deuss, A. and Redfern, S. A. T. (2014). Anisotropy of Earth’s inner core intrinsic attenuation from seismic723

normal mode models. Earth and Planetary Science Letters 404: 354–364, doi:10.1016/j.epsl.2014.08.009.724

Mao, Z., Lin, J.-F., Liu, J., Alatas, A., Gao, L., Zhao, J. and Mao, H.-K. (2012). Sound velocities of Fe and Fe-Si alloy in the725

Earth’s core. Proceedings of the National Academy of Sciences 109: 10239–10244, doi:10.1073/pnas.1207086109.726

Mart́ınez-Flores, E. E., Negrete, J. and Torres-Villaseñor, G. (2009). Relationship between loss-modulus and homologous tem-727

perature in superplastic alloys. Journal of Thermal Analysis and Calorimetry 97: 891–894, doi:10.1007/s10973-009-0163-8.728

Matsunaga, T., Kameyama, T., Ueda, S. and Sato, E. (2010). Grain boundary sliding during ambient-temperature creep in729

hexagonal close-packed metals. Philosophical Magazine 90: 4041–4054, doi:10.1080/14786435.2010.502883.730

Merkel, S., Wenk, H.-R., Gillet, P., Mao, H. kwang and Hemley, R. J. (2004). Deformation of polycrystalline iron up to 30GPa731

and 1000K. Physics of the Earth and Planetary Interiors 145: 239–251, doi:10.1016/j.pepi.2004.04.001.732

Montheillet, F. and Jonas, J. J. (2003). Recrystallization, Dynamic. John Wiley & Sons, Ltd. 205–225, doi:https://doi.org/10.733

1002/3527600434.eap388.734

Moser, Z. (1991). The Pt-Zn (platinum-zinc) system. Journal of Phase Equilibria 12: 439–443, doi:10.1007/BF02645964.735

Murthy, G. S. and Sastry, D. H. (1982). Impression creep of zinc and the rate-controlling dislocation mechanism of plastic flow736

at high temperatures. physica status solidi (a) 70: 63–71, doi:10.1002/pssa.2210700110.737

Myshlyaev, M., Mironov, S., Korznikova, G., Konkova, T., Korznikova, E., Aletdinov, A., Khalikova, G., Raab, G. and Semiatin,738

S. L. (2022). EBSD study of superplasticity: New insight into a well-known phenomenon. Journal of Alloys and Compounds739

898: 162949, doi:10.1016/j.jallcom.2021.162949.740

Nishihara, Y., Doi, S., Tsujino, N., Yamazaki, D., Matsukage, K. N., Tsubokawa, Y., Yoshino, T., Thomson, A. R., Higo, Y.741

and Tange, Y. (2023). Rheology of Hexagonal Close-Packed (hcp) Iron. Journal of Geophysical Research: Solid Earth 128:742

e2022JB026165, doi:10.1029/2022JB026165.743

Niu, F. and Wen, L. (2001). Hemispherical variations in seismic velocity at the top of the Earth’s inner core. Nature 410:744

1081–1084, doi:10.1038/35074073.745

Nowick, A. S. and Berry, B. S. (1972). Anelastic Relaxation in Crystalline Solids. Academic Press.746

Nuss, J., Wedig, U., Kirfel, A. and Jansen, M. (2010). The structural anomaly of zinc: Evolution of lattice constants and747

parameters of thermal motion in the temperature range of 40 to 500K. Zeitschrift für anorganische und allgemeine Chemie748

636: 309–313, doi:10.1002/zaac.200900460.749

28



Nuttall, K. and Nicholson, R. B. (1968). Microstructure of superplastic alloys. The Philosophical Magazine: A Journal of750

Theoretical Experimental and Applied Physics 17: 1087–1091, doi:10.1080/14786436808223186.751

Park, K.-T., Kim, W.-J. and Shin, D.-H. (2002). Analysis on the anelasticity of a superplastic Zn-22% Al eutectoid. Materials752

Science and Engineering: A 322: 159–166, doi:10.1016/S0921-5093(01)01129-7.753
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Figure 6: Cumulative distributions of wire sample microstructure: (a) Grain size, (b) weighted Burgers vector
length and (c) neighbour-pair misorientation distributions; the equivalent plots for the powder samples are in
Figure S6. In each figure the points correspond to individual observations, where these lines appear thick the
data density obscures the individual points. The dashed lines in a, are the area of the sample that contains
twinned grains. The dashed lines in c. are the random pair misorientation distributions for the data, the
thick bars show the position and size of the largest deviation of the neighbour-pair distribution from that of
the random-pair distribution. The solid black lines in c. show zinc’s twin misorientation angle and the grey
bar highlights the region influenced by twinning. A summary of the data here is presented in Table 1. For
details of the compression, annealing and deformation experiments see Supplementary Sections C and D.
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