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Abstract

The recent development of clay-polymer nanocomposite materials has led to an
increased interest In the structure and properties of clay minerals. In this thesis the
reactivity of the clay mineral montmorillonite is explored by means of density
functional theory based calculations. In particular three aspects are considered:
catalytic properties, cation migration and dehydroxylation.

The origin of the catalytic properties of the clay mineral is investigated in the
context of the synthesis of clay-polymer nanocomposite materials, by n situ,
Intercalative polymerisation. It is found that catalysis is most likely to occur at the
clay mineral lattice-edge where exposed aluminium atoms act as Lewis acid sites.

Migration of lithium cations into the clay mineral lattice is explored by
means of first principles molecular dynamics. Comparison of calculated hydroxyl
stretching frequencies, with those from experiment indicates that cations migrate to
vacant octahedral sites, as oppose to the ditrigonal cavities.

Dehydroxylation of the clay mineral is examined by consideration of a cis-vacant
pyrophyllite structure. It 1s shown that dehydroxylation leads to formation of a
trans-vacant structure, with aluminium in trigonal bipyramidal coordination and a
highly distorted tetrahedral laver. Differences in the dehydroxylation behaviour of
cis and trans-vacant pyrophyllite are shown to be due to the fact that in the
former adjacent hydroxyl groups bridge different pairs of aluminium atoms.
while in the latter they are both bonded to the same pair.

Overall density {functional theory based calculations are shown to be

a powerful tool for the study of the structure and reactivity of clay minerals.
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But we have this treasure in jars of clay to show that this all-surpassing power 1s

from God and not from us. 2 Corinthians 4 v 7.
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1.1

1.1.1

Chapter 1

Clay Minerals

Clay minerals are naturally occuring materials formed by weathering and
decomposition of igneous rocks.! They compose a large part of the earths mantle and

are commonly regarded as those particles that comprise the 2 pm colloidal fraction

of soil, sediments, rocks and waters.

Crystal Structure

The small particle size of clay minerals has in most cases prevented their study by
single-crystal X-ray diffraction. Fundamental structural data is therefore limited.

In spite of this, their general structural attributes are considered well established.? 3

Layer Structure

Most clay minerals are layered materials composed of continuous two-dimensional
silicate layers stacked on top of each other in a well-defined manner. The various
classes are distinguished by the differences in their sheets and species that lie in
the spaces between them, known as the interlayer. In fact, most clay minerals are
based on one of a small number of common frameworks. Essential to all of these are

two basic structural components: a tetrahedral sheet and an octahedral sheet.
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Tetrahedral Sheet

Figure 1.1 shows a tetrahedral sheet. Each silicon atom 1s in tetrahedral coordination
with four oxygen atoms. Three out of the four oxygens are bridging and form

a planar hexagonal network, while the remaining apical oxygens sit together in a

plane above.

Figure 1.1: Tetrahedral layer. The colour scheme here is red for oxygen and yellow

for silicon.

Octahedral Sheet

Octahedral sheets comprise metal ions in octahedral coordination embedded between
two layers of close-packed oxygen and hydroxyl groups. The regular arrangement of
the hydroxyl groups means that three distinct octahedral sites may be distinguished.
These are designated cis or trans according to their position relative to the hydroxyls,
shown in Figure 1.2. Two of the sites are cis and one 1s trans.

When the metal 1ons present are divalent, like magnesium, all octahedral sites
are filled and a trioctahedral sheet is obtained, shown in Figure 1.3(a). In contrast,
when trivalent cations such as aluminium are present, just two out of three sites
are occupied and a dioctahedral sheet is obtained. Incomplete filling of octahedral
sites in dioctahedral sheets gives rise to the possibility of structural isomers; one in
which one cis and one trans site are occupied, defined as cis-vacant and a second in

which both cis sites are filled, known as trans-vacant, as in Figures 1.3(b) and 1.3(c).
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1.1.2 Common Frameworks

There are four common ways in which tetrahedral and octahedral sheets are found

arranged together. These are:

1:1 Clay Minerals

Clay minerals with layer structures that comprise just one tetrahedral sheet joined
to one octahedral sheet are known as 1:1, dimorphic or two-sheet clay minerals.

Figure 1.4 illustrates the 1:1 layer structure of the clay mineral kaolinite.

Tetrahedral
Layer

Octahedral
Layer

0 S T -
- - e . - - - --I--’h- - e
Ll e—

Figure 1.4: Unit cell of kaolinite. The colour scheme here is white for hydrogen,

red for oxygen, pink for aluminium and yellow for silicon. Periodic boundaries are

indicated by the blue dashed lines.

2:1 Clay Minerals

Clay mineral with layer structures that comprise an octahedral sheet sandwiched

between two tetrahedral sheets are known as 2:1, trimorphic or three-sheet clay
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minerals and are by far the most common of the layer silicates. Figure 4.3 illustrates

the 2:1 layer structure of the clay mineral pyrophyllite.

Tetrahedral
Layer

Octahedral
Layer

Tetrahedral
Layer

Figure 1.5: Unit cell of pyrophyllite. The colour scheme here is white for hydrogen,

red for oxygen, pink for aluminium and yellow for silicon. Periodic boundaries are

indicated by the blue dashed lines.

2:1:1 Clay Minerals

A more unusual arrangement i1s that of the 2:1:1, tetramorphic or four-sheet
clay mineral, whose layer structure consists of an alternating sequence of 2:1 clay

layers and octahedral sheets. Figure 1.6 illustrates the 2:1:1 layer structure typical

of the chlorite group.
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Tetrahedral
Layer

Octahedral
Layer

Tetrahedral
Layer

Octahedral
Layer

- - -
':::r . - - .. . -

Figure 1.6: Unit cell of chlorite. The colour scheme here is white for hydrogen,
red for oxygen, green for magnesium, pink for aluminium and yellow for silicon.

Periodic boundaries are indicated by the blue dashed lines.

Pseudo-Layer Clay Minerals

An even more unusual composition 1s that of pseudo-layer silicates. These are
not strictly layer silicates, with 2:1 layers being arranged in chains or bands,
linked together by bridging oxygen atoms. Figure 1.7 illustrates the pseudo-layer

structure typical of the sepiolite subgroup of clay minerals.
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Tetrahedral )
Layer

Octahedral
<
Layer

Tetrahedral )
Layer

Figure 1.7: Unit cell of sepiolite. The colour scheme here is white for hydrogen,

red for oxygen, green for magnesium, pink for aluminium and yellow for silicon.

Periodic boundaries are indicated by the blue dashed lines.

Isomorphic Substitution

Further diversity in layer composition is generated by isomorphic substitution of
tetrahedral and octahedral sites. The most common situation i1s that of partial
substitution of aluminium in the octahedral layer and silicon in the tetrahedral
layer by atoms of similar size and coordination, but of different valency. The most
common substitutes for Si*T are AlI°T and Fe’", while for Al°" they are Fe’™, Fe**
and Mg“", though others are found. Such a process gives rise to layers with a

permanent net-negative charge. This 1s balanced by sorption of extraneous metal

cations into the interlayer.

Hydration

The hydration of interlayer cations provides a driving force for the sorption of water

into the interlayer of the clay minerals that possess them. It is therefore normal
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for such clay minerals to accommodate a certaln amount of water within
their interlayer, where it associates with and forms hydration shells around the
metal cations. The acquisition of water via this mechanism is accompanied by
a necessary increase in interlayer separation in order to accommodate the increased

molecular volume of the interlayer contents. The phenomenon 1s therefore

known as clay swelling.

Classification

Clay minerals are distinguished firstly by their layer type, secondly by their formula
unit charge (related to the overall degree of substitution) and lastly by whether
they adopt dioctahedral or trioctahedral geometry (related to the substitution of
octahedral sites.) Table 1.1 provides a list of the most common clay mineral groups
and subgroups. For a comprehensive review of the structure and properties of

clay minerals the reader is directed to Grim*? and Brindley and Brown.*

Applications of Clay Minerals

Clay minerals continue to be important industrial materials. In addition to more
traditional uses, recent development of clay-polymer nanocomposites has opened up

many new application areas.

Solid Catalysts

The catalytic properties of clay minerals have been well known since the mid 1930s,
when they were used in the hydrocracking process, in the petrochemical industry.

Theyv exhibit many different Lewis and Brgnstead acid sites, which make them useful

as solid acid catalyvsts for many organic reactions.” This is particularly provident
In view of current environmental legislation. which necessitates the substitution of

liquid acids and bases by more amenable solid catalysts.
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Table 1.1: Classification of Clay Minerals®

group layer type charge per subgroup

formula unit®

serpentine-kaolinite 1:1 ~0.0 (trioctahedral) serpentines

(dioctahedral) kaolins

talc-pyrophyllite 2:1 ~0.0 (trioctahedral) talcs
(diocathedral) pyrophyllites
smectite 2:1 ~(.2-0.6 (trioctahedral) saponites
(dioctahedral) montmorillonites
vermiculite 2:1 ~(0.6-0.9 trioctahedral vermiculites
dioctahedral vermiculites
mica, 2:1 ~1.0 trioctahedral micas
dioctahedral micas
brittle mica 2:1 ~2.0 trioctahedral brittle micas
dioctahedral brittle micas
chlorite 2:1:1 variable trioctahedral chlorites
dioctahedral chlorites
di,trioctahedral chlorites
sepiolite-palygorskite pseudo-layer variable sepiolites

palygorskites

@ Table adapted from Brindley and Brown.?

® In the case of smectites, vermiculites, micas and brittle micas a formula unit refers to a O19(OH),.

In addition, the geometric structure ot clay minerals may also play a role in their
catalytic behaviour. Species adsorbed into the interlayer are constrained to diffuse
in two-dimensional space rather than a three-dimensional volume, which increases
their encounter frequencies and consequently the rate of any reaction between them.®
Steric effects introduced by the confinement of the interlayer also lead to higher

selectivity in certain reactions.’
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Paper Coating

[n the paper industry, clay minerals from the kaolinite group are used to coat paper
to improve its printability. The coating fills up the voids and crevices between fibres
on the paper surface, making 1t more even, with smaller pores and a narrower pore

size distribution.® It therefore also enhances the aesthetic qualities of the paper.

Drilling Fluids

Drilling fluids are used in the oil exploration and recovery industries to transport
cuttings to the surface during drilling operations. The fluid 1s pumped down the
drill stem and rises to the surface in the space between the drill stem and the walls of
the hole carrying loose cuttings with it. Once at the surface the cuttings are

removed from the fluid, which is then recirculated.

Environmental legislation has meant that current drilling fluids are, in general,
water based. In addition to water. they contain a small weight percentage of a clay
mineral and also, depending on the conditions, some inorganic/organic additive.

T'he clay mineral most extensively used in drilling fluids is bentonite; this is the
name given to montmorillonite from the Wyoming area of the United States, with
sodlum as the predominant exchangeable cation. When a small volume percentage
1s added to water 1t forms a Huid with ideal rheological properties for a transport
medium-—high viscosity and thixotropy. These properties ensure that when drilling
1S stopped the fluid forms a thick gel that suspends the rock cuttings, preventing then
from sinking to the bottom of the wellbore. It is, however, possible to obtain drilling
fluids with similar rheological properites with other clay minerals. The preference
for bentonite arises due to the fact that when used in drilling operations it forms a
thin impervious layer on the wall of the borehole, which stabilises the exposed rock
formation. The uniqueness of bentonite in this respect is thought to be due to the
fact that it is easily dispersed 1nto flakes of almost unit cell thickness, which one can

imagine to plaster the surface of the wellbore.?
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Waste Management

The sorptive properties of clay minerals has led to their use in the containment of

domestic, industrial and nuclear waste.

Domestic and Industrial Landfills

European Union landfill regulations have made installation of artificial liner systems
mandatory for all landfills, except sites where a suitable low permeability natural
liner, such as a clay mineral formation, is present.” In either case the liner is required
to contain all leachate produced by degredation of the landfill waste and so provide
complete protection to all groundwater.

Modern artificial liners are multiple barrier clay-membrane systems, comprising
one or two layers of a synthetic membrane, such as high density polyethylene, inter-

layered with 1m of smectite clay mineral material.?>! In the event that pollutants
pass through the synthetic membrane, they are expected to be absorbed by the clay

mineral material .Y 11

Nuclear Waste Repositories

T'he permanent disposal of high level nuclear waste, such as spent nuclear fuel, is
a major sclentific challenge. Investigations by research groups in different countries
have led to the proposal of similar multiple barrier systems.!*"1* The general concept
1S to seal the nuclear waste 1n corrosion-resistant copper containers, deposit these
in engineered repositories 500-1000m deep in a geological formation and surround
them with a compacted, smectite-clay-based buffer material.

The 1ntended role of the clay-based buffer material is two-fold. In the first
instance 1t would protect the container from minor movements in the surrounding
geological formation. In the second instance its sorbtive properties would prevent
groundwater flow around the container and also at a later stage retard migration

of leached radionuclides from corroded canisters.
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Studies looking at the properties of smectite clay minerals with a view to their

use as buffer materials for nuclear waste repositories have included investigation of

16,17 18,19

swelling behaviour, and

long-term stability,'® thermomechanical properties,

ion diffusion.'® 2% Synthetic organophilic clay materials have also been studied.?!>%?

1.3.5 Clay-Polymer Nanocomposites

In recent years there has been considerable interest in clay-polymer nanocompos-
ites due to the novel material properties that they exhibit. They offer enhanced
mechanical,*>?* thermal““® and permeability properties,“’ which has led to a wide
range of applications in the automotive, electronics and furnishing industries.

The intrinsic structure of clay-polymer nanocomposites varies depending on their
constituents and method of preparation. Two extremes may be used to define the
range of possible structures. At one extreme the intercalated polymer chains sit
within the clay mineral layers, which are stacked together in a well-ordered man-
ner. Such materials are called intercalated or non-ezxfoliated nanocomposites. At the
other extreme the clay mineral layers have lost their order and are well-dispersed
In a continuous polymer matrix. Such materials are called delaminated or exfoli-
ated nanocomposites. Some nanocomposites, may of course, contain both ordered
and disordered phases. Recent research has mainly focused on the preparation of

exioliated rather than non-exfoliated materials because of their lower density.

1.4 Summary

Clay minerals are naturally occuring materials that comprise silicate layers.
In some clay minerals, isomorphic substitution of octahedral and tetrahedral sites
by atoms of lower valency causes the layers to be negatively charged. To maintain
charge neutrality metal cations reside between the layers. Hydration of the cations
provides the driving torce for the adsorption of water. These structural features give

rise to their physical and chemical properties which lead to a range of applications.
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Chapter 2

First Principles Simulation

This chapter provides a short discription of the advantages and disadvantages of
both first principles and classical simulation and the types of problems each is par-
ticularly useful for studying. It goes on to describe some of the fundamental con-
cepts of molecular quantum mechanics: the time-independent Schrodinger equation,
Born-Oppenheimer approximation and variation principle. This i1s followed by an

outline of Hartree-Fock theory, which lays the foundation tor an overview of density

functional theory.

First Principles or Classical Simulation?

First principles (or ab initio) simulations attempt to solve—to a good approximation-
the equations of quantum mechanics, 1n order to model the interactions between
electrons and nuclel in the system under study. In classical simulations, however,
there 1s no description of interactions at the sub-atomic scale, instead atoms are
considered as a single unit and interactions between them modelled by potential
functions from classical physics.

The only input data required for a first principles simulation is the atomic number
and position of the nuclei and the total number of electrons. In a classical simulation,

by contrast one must also provide a set of suitable parameters for the interaction

24
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potential functions, known as a force-field. Force-field parameters are derived from
empirical data and/or quantum mechanical calculations on a finite set of svstems.
There is therefore a question as to how well a force-field is able to simulate the
properties of compounds dissimilar to those from which it was derived. This kind
of uncertainty 1s not encountered in ab initio simulations where the approximations
made are system independent.

If one 1s interested in the electron dynamics of a system—such as bond making-
bond breaking—one must perform a first principles simulation, since only they have
explicit representation of electrons. This however, comes with a huge associated
computational cost—at present electronic structure calculations are limited to
systems of up to hundreds of atoms, even when using large parallel machines.
On the other hand, if one is interested in phenomena predominantly governed by
non-bonded interactions, classical simulations are often preferable. The use of simple
inter-atomic potentials means that they are able to handle up to millions of atoms
and therefore model much larger and more realistic systems.

In the present work, our interest in bond formation neccessitates the use of first

principles simulation, described next.

Elementary Quantum Mechanics

In this section we give a very brief overview of the basics of quantum mechanics.

The Time-Independent Schrodinger Equation

The fundamental basis of first principles simulation methods is the time-independent,

non-relativistic Schrodinger equation:

HU = EV (2.1)

In the context of a svstem of IV electrons and A nuclei H is defined as the Hamil-

tonian operator, ¥ the electronic and nuclear wavefunction, and F the total energy.
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their motion.

The Hamiltonian operator for such a system may be written as:

M

. ] < ]
7= QZV?"gZMA ZZ

1—=1 A=1 TiA

4= ZZ“—+ ZZZ}%ZBB (2.2)

r
i=1 j#i Y A=1 B#A

In this expression the first two terms define the kinetic energy of the electrons and the
kinetic energy of the nuclei, while the remaining three describe the potential energy
arising from electron-nucleus, electron-electron and nucleus-nucleus electrostatic
Interactions, respectively. In this text atomic units are used throughout such that
h/2m = m, = 4mey = 1, where h is Planck’s constant, m, is the mass of an electron
and €g 1s the permittivity of free space. In this notation M , the mass of nucleus A,
must be given in multiples of the mass of an electron, the unit of length is Bohrs and
the unit of energy Hartrees. The other terms are r,, and R,,, the distance between
particles p and ¢; and Z,4 the atomic charge on nucleus A. The Laplacian, V?, is

the sum of the differential operators, which in Cartesian coordinates has the form:

2 2
2 S——
ViZoz oz a2

Z [/

(2.3)

According to the postulates of quantum mechanics, the energy and properties of

a stationary state of a system of microscopic particles are obtained from the solution

of the Schrodinger equation. To determine such solutions, one must make a series

of approximations.

The Born-Oppenheimer Approximation

The first simplification made is the Born-Oppenheimer approximation which states

that, since the nuclei are much heavier than the electrons, it is possible to separate

6 The nuclei move relatively slowly and so the electrons are pre-

summed to follow their motion adiabatically—that is the electrons respond almost
instantaneously to changes in the position of the nuclei. The electrons can therefore

be assumed to be moving in an external field created by the fixed nuclei.
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If the nuclei are considered fixed their kinetic energy is zero and the nucleus-

nucleus repulsion term is equal to a constant. Thus the total Hamiltonian may be
simplified to give the electronic Hamiltonian:

ﬁ | : NM o DD
Helec:_é';vi_zz_‘l‘é‘ZZF. (24)

7
i=1 A=1 A i=1 j#£i Y

The electronic wavetunction V.. and the electronic energy E.... are solutions ot

the electronic Schrodinger equation:
ﬁelecqjelec — Eelecqjelec- (25)

The total energy ot the system 1s then the sum ot the electronic energy and
the constant nuclear repulsion term. 'lTo optimise 1onic positions, the electronic

Schrodinger equation may be solved for difterent nuclear arrangements to obtain a

multidimensional potential energy surface (PES).

Since we are nearly always only concerned with solving the electronic Schrodinger

equation we will subsequently drop the ‘elec’ superscript and use H. ¥ and E to

refer to Hejeey, Veree and Egee, respectively.

2.2.3 The Variational Principle

In all but a few very simple cases there 1s no way to solve the electronic Schrodinger
equation exactly for either atomic or molecular systems. One must therefore use the

variational principle to systematically approach the ground state wavefunction ¥,

which will deliver the lowest energy FEj.

The variational principle states that if an arbitrary trial wavefunction is used

to calculate the energy of a system, then the value calculated is never less than the

true energy, shown by the inequality:

<qjtriallﬁ|qjtrml> — Et'rial > EO — <@0|EI\IJU>, (26)

where we have used Dirac notation, such that:

(@]ﬁ‘\l’) — /\Il*(xl,xg...xN)Iﬁ{\Il(xhxg...xN)dxl,dxg...de. (2.7)
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are expressed as a linear combination of atomic orbtials (LCAQO):

CHAPTER 2. FIRST PRINCIPLES SIMULATION_ 238

. . ke

Basis Sets

In order to minimise the expectation value of the electronic energy (2.6) one must
search through the infinite number of possible acceptable NV electron wavefunctions.
Of course, 1n practise this 1s impossible, but one can apply the variational principle to
a subset of possible functions. The electronic wavefunction is usually approximated

using either localised orbitals or planewaves.

Localised Orbitals

The orbital approximation suggested by Hartree,”” implies that a many-electron
wavetunction may be expressed as a simple product of one-electron wavefunctions.
In fact, to adhere to the Pauli principle,®® it must be an antisymmetrised product.
T'he simplest way to achieve this is to express the many-electron wavefunction as a

Slater determinant?! of one-electron wavefunctions, written as:

X1(x1)  x2(x1) Xn(X1)

1 X1(X2)  xa2(x2) -0 xw(xo)
V) 5 5 5 | 29

X1(xXn) xo(xn) - xwn(xn)

where x;(x;) are the one-electron wavefunctions, x; donates both the spatial r; and
spin §; coordinates of electron ¢ and NV is the total number of electrons in the system.
In the localised orbital approach the one-electron wavefunctions, commonly called

spin orbitals, are expanded as a product of a spatial ;(r;) and spin n;(&;) function

such that y;(x;) = ¥;(r;)m:(&). In turn, the spatial functions, or molecular orbitals

.32,33

T

wi — Zciﬂélﬂ (29)

p=1

where m is the number of atomic orbitals ¢, used to describe the molecular orbital

and ¢;, are the atomic orbital coefficients calculated self-consistently, as discussed
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in Section 2.4.2. The spin functions may take one of two values, usually denoted
n;(a) and n;(B) corresponding to the usual spin-up or spin-down picture. Thus each
molecular orbital may accommodate two electrons, one in each of the two spin states.

In a similar way, atomic orbitals are almost always constructed as a linear
combination of Gaussian functions, called contracted Gaussian-type orbitals.
The preferred use of Gaussian functions is due to their favourable algebraic
properties which make integral evaluation easier during calculations.

Basis sets of different degrees of accuracy are defined by the number and type of
atomic orbitals they assign to each atom type. One can see that maximum accuracy
is obtained when the number of atomic orbitals used in the linear expansion (2.9)
1s infinite. In practice it is usually chosen to be as high as possible taking into
consideration the computational resources available.

The localised orbital representation of a wavetunction is well suited to the study
of atoms and molecules, since the orbitals are centred on the atoms. In the limit of
a finite basis set however, the localisation of atomic orbitals causes problems.

In first principles simulations, forces on atoms can, in theory, be taken to be
the Hellman-Feynman forces,*? determined analytically from the derivative of the
total energy with respect to nuclear coordinates. 'T'he Hellman-Feynman theorem
1S, however, only valid when the wavefunction used is an exact eigentunction of the
Hamiltonian, which is never the case since a finite basis set is always employed.
Theretore, in practise, one must also calculate contributions due to variations in the
wavefunction, known as Pulay forces.?> In contrast, Pulay forces are not present
when a hnite size, position independent basis set is used.

In the theory of quantum mechanics there is a finite probability of an electron
being anvwhere 1n space. In using localised atomic orbitals we restrict the location
of the electrons. This gives rise to so called basis set superposition errors (BSSE),?
which are particularly noticeable when calculating binding energies. They come
about because individual fragments of a structure are able to make use of the basis

functions of other fragments. Thus each fragment utilises a basis set larger than
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that available to it when in 1solation. This results in calculated binding energies
being too attractive. It is possible to estimate basis set superposition errors by the
counterpoise method,”® which computes the energies of individual fragments using
the basis set of the complete system.

One further problem associated with the localised orbital approach 1s that there
is no systematic way of improving the quality of a basis set. This means that to
demonstrate convergence it is often necessary to perform a series of calculations on

a system, using basis sets not only of increasing size, but also different form.

Planewaves

In order to better model the continuum properties of extended systems, such as
crystalline solids, it is often useful to make the supercell approximation.’” In this
approach a system is modelled by a relatively small unit cell with periodic boundary
conditions applied.

If the supercell approximation is made, a different description ot the electronic
wavefunction may be used. In this prescription the electronic wavefunction is still
constructed as a Slater determinant of one-electron wavefunctions (2.8), but the
periodicity of the cell means that i1t 1s possible to describe the one-electron wave-
functions by an expanded planewave basis set rather than localised orbtials.

The planewave representation of the one-electron wavefunctions is based upon
Bloch’s Theorem,*® which states that in a periodic system the eigenstates of a one-
electron Hamiltonian can be chosen to have the form of a planewave multiplied by

a function with the periodicity of the Bravis lattice:

wnk(r) — eik.runk(r)a (210)

where k is a wavevector, defined by the reciprical lattice vetors; n is the band index.
which occurs because tor a given k there will be many independent eigenstates and

unk(r) is a function with the periodicity of the crystal lattice.
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The periodic function can be expressed in terms of a basis set consisting of a

discrete set of planewaves, whose wavevectors are reciprical lattice vectors G:

unk(r) p— ZGan’GeiGT. (211)

Therefore each one-electron wavefunction can be written as a sum of planewaves:

2pfnk — chn,k+Gei(k+G).r- (212)

There are two potential difficulties with the practical use of this equation. In theory,
the summation is over an infinite number of reciprocal lattice vectors. In addition,
to calculate the correct band structure the calculation needs to be performed for all
allowed wavevectors, in the Brillouin zone. However, some approximations can
be made to overcome these problems.

In practise, it is found that summation over a finite number of reciprocal lat-
tice vectors yields sufficient accuracy. The coefficients ¢, k+g for the planewaves
with small kinetic energy are usually more important than those with larger kinetic
energy, which are much higher than acccessible physical energies. It 1s theretfore
possible to make an approximation and truncate the planewave basis set so as to

include only planewaves with energies less than a certain kinetic energy cut-off £,

given by:
he(k + G)?
g, = k+G) (2.13)
21

Since electronic wavefunctions with wavevectors in close proximity to each other
will be almost identical, it is possible to represent the electronic wavetunctions over
a region of k-space by a single wavevector. In this way the electronic states at
only a finite set of wavevectors are required to calculate the electronic potential and
hence the total energy of the system. Several schemes for selecting a suitable set of
wavevectors exist, one of the most popular and also the one used in this work is that
described by Monkhorst and Pack.>®*° Since the volume of the reciprocal lattice is
inversely proportional to the volume of the real-space cell, for very large systems it

may only be necessary to consider one wavevector.
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In spite of this, the use of planewaves to describe electronic wavefunctions 1is
impeded by the vast number of planewaves required to expand tightly bound core
orbitals and follow the rapid oscillations of the wavetunctions of the valence electrons
in the core region, which make it too computational expensive. In order to reduce
the number of planewaves required, planewave basis sets are almost always used in
conjunction with pseudopotentials.*!

The pseudopotential approximation exploits the fact that the core electrons of an
atom are relatively uneffected by the atomic enviroment and it is the valence eletrons
that are largely responsible for chemical bonding and physical properties. 'T'he core
electrons and ionic potential are replaced by a weaker pseudopotential, which acts
on a set of pseudowavetunctions rather than the true electronic wavetunctions. Pseu-
dopotentials are, constructed in such a way that the pseudowavefunctions show the
same shape as the true wavefunctions outside the core region, but with no radial
nodes inside. In this way the number of planewaves required to expand the electronic
wavefunctions is dramatically reduced. In addition, removal of the core electrons
means that there are less one-electron wavetunctions to be calculated.

The removal of core electrons also has an impact on the calculated total energy,
which is typically a thousand times smaller than that which would be obtained from
an all-electron calculation. This dictates that in pseudopotential calculations only
energy differences are meaningtul.

In general, two criteria are used to classity different types of pseudopotential.
A local pseudopotential is one which uses the same potential for all the angular
momentum components of the wavefunctions, whereas a non-local pseudopotential
uses different potentials for the different angular momentum components. A norm
conserving pseudopotential is one for which the integral of the squared amplitudes
of the wavefunction and pseudowavefunction are identical, such that they generate
identical electron densities. The pseudopotentials used in this work were the ultra-
soft pseudopotentials of Vanderbilt** and the Troullier-Martins pseudopotentials*?

in Kleinman-Bvlander form.*
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Although the planewave approach 1s naturally suited to the study of crystalline
materials, it can be used to describe any system in a periodic cell provided that
the cell is large enough to eliminate spurious intereactions caused by the artificial
periodicity, called finite size effects. The use of planewaves rather than localised
orbitals has several benefits. For example, since planewaves are not dependent on
atomic positions, for a fixed unit cell there are no Pulay contributions to the forces on
atoms. The independence of planewaves from atomic positions also means that basis
set superposition errors are not encountered. In addition, the quality of a basis set
can be systematically improved by increasing the number of wavevectors considered
and the kinetic energy cut-off, normally done until the total energy converges to a
predefined accuracy.

One drawback of the planewave description 1s that the number of planewaves
required for a calculation increases with the volume of the simulation cell, instead
of the number of atoms, as in the localised orbital apporoach. It is therefore less

efficient for the study of systems which exhibit large amounts of unoccupied space.

Hartree-Fock Theory

T'he variational principle implies that the ground state electronic energy of a system
may be determined by varying the electronic wavefunction to minimise the expecta-
tion value of the electronic energy (U|H|¥), while maintaining the orthonormallity
of the spin orbitals ¢.e. (x;|x;) = 0i;. This is acheived by the method of Lagrange
undetermined multipliers, as described in detail by Szabo and Ostlund,*® such that

we minimise the expression:

N N

(UIH[T) = > e;0alxs) — 6= 0, (2.14)

i=1 j=1
where ¢; ; are called the Lagrange multipliers.

In practise this means that the coefficients of the molecular orbitals are varied

until a minimum value 1s obtained.
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The Hartree-Fock Equations

The many-electron Hamiltonian (2.5) contains three terms. The first two terms are

single-particle operators and last term is a two-particle operator. The expectation
value of the many-electron Hamiltonian is therefore given by:

i) = 3 faxitea)l-5 98- 30 S ut)

r
411A

ZZ /dxl/dxﬂz X1) X ( Xg)-i-xz(xl)xj(xz)

T
1131 12

/dm/dmxz X1)X; ( XQ)—l—Xz(Xz)x;(xl)] (2.15)

r'12
Substition of (2.15) into (2.14) and variation of the wavefunctions leads, after some

mathematical manipulation, to the (canonical) Hartree-Fock equations:

Fa)

fi(xl)Xi(xl) — eiXi(xl)a fOT p = 13233*”N1 (216)

where fi(xl) is the Fock operator given by:

M N

- 1 / . .

fi(xl) — ‘2"‘7% — E '7‘"1'/4: + E [Jj(X1) — Kj(xl)], (217)
A=1 7 1=1

here jj(xl) 1s the Coulomb operator, which represents the electrostatic potential an

electron at position x; experiences due to the average charge distribution of another

electron in spin orbital x;:

i) = [ b)) —xx) (2.18)

12

and I%j(xl) 1s the exchange operator, which has no classical interpretation, but arises

due to the correlation of the motion of electrons with parallel spin:

Ryxiux) = [ dxaxs () (x0) = xil0): (2.19)

12

and the Lagrange multipliers ¢; have the physical interpretation of orbital energies.
We note in passing, that in the double summation of (2.15), the term ¢ = j is
allowed and therefore includes the unphysical electrostatic interaction of an electron

with itself. This problem 1s however very neatly dealt with, since when ¢ = 5 the

Coulomb and exchange integrals cancel exactly.
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The total electronic energy can then be calculated as the sum of the one-electron

energies minus half of the Coulomb and exchange energies, otherwise counted twice:

Lgp = Zei - %ZZ[/.dxl/dXzXf(Xl)X;(Xz)“l—Xi(Xl)Xj(M)

.
i=1 j=1 12

' 1
— /dX1/dX2Xf(X1)X;(X2)T

12

Xi(x2)x;(x1)] (2.20)

2.4.2 Self-Consistent Field Method

2.5

Since the Coulomb and exchange operators depend upon the one-electron wavetunc-
tions themselves, the Hartree-Fock equations (2.16) must be solved self-consistently.

In this approach a set of trial one-electron wavefunctions are used to determine the
Coulomb and exchange operators. These are then used to solve the equations, which
result in a new set of one-electron wavefunctions and their corresponding energies.
The states with the lowest energies are occupied and the Coulomb and exchange
operators recalculated. This process 1s repeated interatively until the output po-
tentials are acceptably close to the input potentials. From the variational principle,

this self-consistent procedure generates the ground state of the system.

Post Hartree-Fock Techniques

Since the Coulomb and exchange operators involve the average (not instantaneous)
repulsive interactions between electrons, the energy calculated by the Hartree-Fock

method E';r 1S not the true non-relativistic energy £y. The difference between these

values is known as the correlation energy E., defined by:
E. = Ey — Eyg (2.21)

In fact, equilibrium geometries and relative energies calculated by the Hartree-Fock
method are often in good agreement with experimental results. The need to account
for electron correlation 1s more crucial 1n the study of dispersive effects, which play

a major role in intermolecular interactions.
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Configuration Interaction

A popular way to incorporate electron correlation into ab tnitzo calculations 1s known
as configuration interaction (CI), which expresses the multi-electron wavefunction
as a linear combination of its ground and excited-state wavetunctions W ;:
V=) ¢y, (2.22)
J
where c¢; are the expansion coeflicients, calculated variationally.

One drawback of configuration interaction is that, unless full configuration in-
teraction is used, the calculations are not size consistent i.e. the energy of /N non-
interacting particles is not equal to /N times the energy of a single particle. In
addition, it also very computational expensive, typically scalling as O(NN®), where
N is the number of electrons in the system. The method is therefore only used 1n

cases where the accuracy of the total energy 1s paramount.

2.5.2 Moller-Plesset Perturbation Theory

A further approach to electron correlation is Mpller- Plesset perturbation theory.*®
It 1s based on more general many-body perturbation theory, in which the exact
Hamiltonian H is expressed as the sum of a zeroth-order Hamiltonian ﬁo, which 1s

soluble exactly, and a perturbation 1" which is assumed to be small in comparison:
H=Hy+\V (2.23)

Since 17 1s a small perturbation we can write the eigenfunctions ¥, and corre-

sponding energies F; of the exact Hamiltonian as a power series in terms of A:

O = 00 + A 4220 4= e, (2.24)
n=0

Ei=E" + NEV +MEP + .. =) A\"E™, (2.25)
n=0

where ¥? and E; are the eigenfunctions and corresponding energies of the zeroth-

) .

order Hamiltoman. Ef” 1S known as the nth-order correction to the energy.
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Substitution of expressions (2.23), (2.24) and (2.25) into the time-independent
Schodinger equation (2.1), followed by equation of coeflicients of like powers of A,

multiplication by \IJEO) and integration over all coordinates leads to formulae for the

energy contributions. The first three of these are:

EY = (!9 fy|wl”) (2.26)
EY = (v 1w (2.27)
E? = (0w (2.28)

In Mgller-Plesset perturbation theory the zeroth-order Hamiltonian is taken to

be the sum of the one-electron Fock operators:

N

Ho= ) fi(x1), (2.29)

1=1
theretore the zeroth-order energy is equal to the sum of the energies of the occupied

spin orbitals:
N
EO =S e (2.30)

The true Hamiltonian is equal to the sum of the kinetic energy, nuclear attraction
and electron repulsion terms, hence the perturbation is given by:
R PN N N ﬂ
V= 522; - ZZ[Jj(Xl) — Kj(x1)), (2.31)
i=1 j=1 Y i=1 j=1
and the first-order energy correction 1s:

Eél) — —%ZZ[/Xm/dXQX:;(Xl)X;(XQ)LXi(Xl)Xj(XQ)

T
1=1 j3=1 12

— /dxl/dXQXI(Xl)X;(XQ)_l_Xi(XQ)Xj(Xl)]' (2.32)

I'12

It can therefore be seen that the sum of the zeroth-order energy and first-order

energy correction is equal to the Hartree-Fock energy:

Eyp=E® + EWY. (2.33)
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To obtain an improvement on Hartree-Fock theory it is therefore necessary to
use Mopller-Plesset perturbation theory to at least second-order, referred to as the
MP2 level of accuracy. The only new information required to obtain the MP2 energy
is the first-order wavetunction, which may be expressed as a linear combination of

solutions to the zeroth-order Hamiltonian \IJ( ),

ot = ZCJ\D(O) (2.34)

(0)

where X include excitations, obtained by promoting electrons into virtual orbitals.

This leads to the following expression:

\IJ(O) f?’ \I’(-O) 2
Eo T Ej

]

which can be expanded in terms of ground-state and virtual spin orbitals:

2D DRI 239

where the sum over a and b corresponds to all ground-state spin orbitals, the sum

over r and s corresponds to all virtual spin orbitals and

1
@bllrs) = a1 [ dxa )i 0x0) = e ) xs ()

/ dx, / dx2X; (X1) X5 (XZ);};X?(XQ)XS(XQ]' (2.37)

It we set A =1, the energy at the MP2 level can be calculated as:
Eo=EY +E" +EY (2.38)

Mogller-Plesset perturbation theory is a size consistent method. In addition, it
1s also a relatively cheap way to incorporate correlation eftects, with scaling of an
MPn calculation being of the order O(N{"*3)) The main disadvantage of it is that
it is non-variational and therefore 1t is possible to obtain energies lower than the
exact energy. A simpler way to account for electron correlation is given by density

functional theory.
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Density Functional Theory

Density functional theory (DFT) provides a valuable alternative to the more con-
ventional quantum mechanical methods. It 1s still in principle an ab initio technique
since it is based on a parameter free theory, although as will soon be clear, it also
possesses some empirical elements.

The basis of density functional theory is similar to that of Hartree-Fock theory,
indeed the Born-Oppenheimer approximation i1s made and consequently the problem
it attempts to solve is identical: to find the ground-state energy of a system of
interacting electrons moving in an electric field generated by an arrangement of
fixed nuclei. The formularisation ot the two theories is also very similar, in that
both reduce the problem to a set of one-electron eigenvalue equations, which must
be solved self-consistently.

The most prominent difference between density functional theory and other
quantum mechanical schemes is the change in central quantity from a many-electron
wavefunction to the electron density. In addition, the kinetic energy of the electrons
1s calculated In a subtlely different way, which makes use of the fact that a
Slater determinant i1s an ezact eigenfunction of a Hamiltonian operator that
describes a system of non-interacting electrons moving in an external potential.
In addition, the non-classical electron-electron interactions are calculated in an
alternative manner, which not only incorporates correlation eftects, but also
results in a substantial reduction in computational cost. This means that density
functional methods can be applied advantageously to much larger systems.

It 1s no surprise then that the use of density functional methods has increased
enormously over the last fifteen years, undoubtedly in part due to the success of
the molecular dynamics method of Car and Parrinello.*” The great importance of
the method and 1ts application in simulation was recognised by the award of the
1998 Nobel Prize in chemistry to Walter Kohn and John Pople who both played

significant roles in its early development.



CHAPTER 2. FIRST PRINCIPLES SIMULATION 40

2.6.1 The Hohenberg-Kohn Theorem

Density functional theory is based on the Hohenberg-Kohn theorem,*® which states
that for a system of NV interacting electrons, moving in an external potential 1, (r)

provided by fixed nuclei, we can define an energy functional:

E[p(r)] — F[p( )] /dr1 ezt (T)p (I‘), (239)

where F'p(r)] is a universal functional of the electron density p(r) independent of

both V,.:(r) and N, given by:

Flo(r)] = (¥|H|W), (2.40)

here H 1s a Hamiltonian operator, expressed as:

 — »
2-;% ZZ— (2.41)

r
i=1 j#i Y

and the ground state electron density pg(r) minimises the energy functional to give

the ground-state electronic energy FEy|po(r)].

In the same paper, Hohenberg and Kohn went on to show that it is convenient

to separate out the classical Coulomb energy of the system from F|p(r)] to give:

/drl/dg prL)p ———-—+G[ (r)], (2.42)

where G|p(r)] is also a universal functional of the electron density like F[p(r)].

Substitution of this expression into equation (2.39) leads to:

Bloe)) = [ drVian(e)pte) + 5 [ dr, [ dr? ArA2) | i) (2.43)

2.6.2 The Kohn-Sham Equations

Kohn and Sham continued the formulation of density functional theory with the

introduction of the concept of a non-interacting reference system*’ and expanded

the functional G|p(r)] as:

Glo(r)] = Tilp(r)] + Exc[p(r)], (2.44)
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where T,[p(r)] is the kinetic energy of a system of non-interacting electrons moving

in an effective potential Vg(r), with the same total density as the actual system of

interacting electrons, defined as:

r)| = —-;- Z;/idw?(r)v%?;(r), (2.45)

with ¢;(r), the one-electron wavefunctions of the non-interacting reference system,
known as the Kohn-Sham orbitals, being analogous to the x;(x) in the Hartree-Fock

method and related to the real system of interacting electrons by the expression:

— Z |90i(1')|2§ (2.46)

and E,.|p(r)|, is defined as the exchange-correlation energy of the actual system,
which in addition to the non-classical contributions of self-interaction correction,
exchange and Coulomb correlation, also includes the difference in the kinetic energy
of the non-interacting reference system and the real interacting system of electrons.

Substitution of equation (2.44) into equation (2.43), leads to the full expression

for the energy functional:

Elp(r)] = / AV (1) p(2)
/ i, / ar, 2P ) (2.47)

which 1s calculable exactly provided the forms of the effective potential Vg(r) and

exchange-correlation functional E,.|p(r)] are known.
In order to minimise the energy we must vary p(r) over all densities containing

IV electrons. This 1s achieved by the method of Lagrange undetermined multipliers,

where y is chosen so that [p(r)dr = N, such that we have:

0
0p(r)

which, using expansion (2.47), leads to:

0T [p(r)] _ L pre)  0Egp(r)]
(5,0(1') T ‘e:z:t( ) T /d 2 — H, (249)

Elp(r)] - u / drp(r)] = 0. (2.48)
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p— .

where we define the Coloumb potential:

=(r) = dp(r)

If we now specify a new potential V,;¢(r), such that:
‘/eff(l‘) — Vext(r) —+ VL(I‘) —+ VIC(I‘), (252)

equation (2.49) can be rewritten as:

0T5]p(r)
op(r)

which is exactly the same equation we would obtain for a system of non-interacting

=+ V;ff(l‘) — M, (2'53)

electrons moving in an external potential Vi s¢(r). Thus Vess(r) must equal Vs(r),

the potential experienced by the electrons in the non-interacting reference system.
This implies that to find the ground-state electron density of the non-interacting

reference system we solve the one-electron Schrodinger equations:
1
[—-EV? + Vir(D)]pi(r) = eipi(r)  1=1,2,3..N, (2.54)

known as the Kohn-Sham equations and analogous to the Hartree-Fock equations.

The electron density can then be constructed from equation (2.46). Since Vs(r)
depends on the electron density itself, the equations must be solved self-consistently.

The energy of the real system of interacting electrons can then be calculated as:

Elp(r)] = Zilei — —;— /drl/dmdrlfr)lpg(r?l - /drVM(r)p(r) + E..|p(r)], (2.55)

where the first term is the total electronic ground state energy of the system with

the non-interacting electrons moving in an external potential V,s¢(r). The second
and third terms collectively subtract the excess energy included in the first term.
caused bv the electrons moving in an external potential V.s¢(r) instead of 1,..(r)
and also return the Coulomb energy of the system of interacting electron moving in
an external potential 1,,;(r). The last term is the exchange-correlation energy of

the svstem of interacting electrons moving in an external potential V. (r).
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Exchange-Correlation Functionals

Thus far, no reference has been made to the precise form of E,.[p(r)| the exchange-
correlation functional. It 1s very important to appreciate that if it were known,
density functional theory would provide a theoretical method by which the ezact
ground-state electronic energy of a system of interacting electrons may be calculated.

Of course, in general it 1s unknown and must therefore be approximated.

The Exchange-Correlation Hole

Before proceeding to discuss approximations to the exchange-correlation functional,

it is helpful to briefly describe the concept of the exchange-correlation hole,”’*

which 1s a useful way to visualise the difference in the uncorrelated and correlated

probability of finding an electron at a particular point in co-ordinate space.
In a system of interacting electrons there is said to be an exchange-correlation
hole associated with each distinct pair of electrons. For an arbitrary pair of electrons,

with the coordinates x; and x5, the associated exchange-correlation hole h,.(x1; X32),

can be expressed as:

hze(X1;X2) = pQ/(O}((;})CQ) p(Xsa), (2.56)

where p(x;) is what has thus far been referred to as the electron density, but more
strictly speaking 1s a probability density—the probability of finding an electron of
arbitrary spin within the volume element dr;, while the remaining electrons have
arbitrary position and spin; and po(x1;X>,), referred to as the pair density, is the
probability of simultaneously finding an electron with spin &, within the volume
element dr; and another with spin & within the volume element dr,, while the
remaining electrons have arbitrary position and spin. The exchange-correlation
hole 1s thus the difference in the probability of finding an electron with spin &, at rs,
given there is already an electron with spin & at r; and the uncorrelated probability.
The name arises since the presence ot the electron at r; causes a depletion (or hole)

in the electron density at ry, due to the correlation it introduces.
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— — T =

The appeal of the exchange-correlation hole in density functional theory is that

it provides a way to quantify the effects ot seli-interaction and electron correlation.

[t may be formally separated into two components:
h:z:c(xl; X‘Z) — h:’L‘(Xl; X?) + hc(xl; XQ)- (257)

where hgy(x1;Xy) is known as the Fermi hole and h.(x1;x3) the Coulomb hole.

The Fermi hole is the depletion in electron density due to the correlation ot the
motion of electrons with parallel spin, as implied by the Pauli principle.?’ This type
of correlation is included in the Hartree-Fock method, by the antisymmetry of the
wavefunction used. The Fermi hole exhibits several important physical properties.
Like the total hole, it integrates to -1 for electrons with parallel spin, however for

electrons with antiparallel spin it integrates to 0, such that:

/nghm(Xl; XQ) — _56152 (258)

In addition, because the Pauli principle implies that two electrons of the same spin
can never occupy the same position in space, for xo—x;, the Fermi hole must be
equal to minus the density of electrons with the same spin as the electron with

coordinates xp, expressed as:
he(X1;Xo—X1) = —p(xX1). (2.59)
It can also be shown that the Fermi hole is negative everywhere, denoted by:

he(x1;%2) < 0. (2.60)

The Coulomb hole is the depletion in electron density due to the correlation
of the motion of electrons which arises from instantaneous electrostatic repulsions.
This type of correlation 1s not included in the Hartree-Fock method. The Coulomb

hole integrates to 0, such that:

/nghc(Xl;Xg) =0 (2.61)
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The spin and system average of expressions (2.58), (2.60) and (2.61) gives three

important conditions for the system-averaged exchange-correlation hole,”! these are:

/drz<h$(r1; r)) = 1, (2.62)

(he(r1;r2)) <0, (2.63)

and

/dr2<hc(1'1;1'2)> = 0. (2'64)

It must be kept in mind that only the total exchange-correlation hole has real
physical meaning. Taken individually, neither the Fermi or Coulomb hole are usually
a good representation to the total hole, 1t 1s only the sum of the two quantities that
yields the correct shape and behaviour.

The exchange-correlation hole may be used to construct an expression for part of
the exchange-correlation functional, since it provides a theoretical way to calculate
the correction for self-interaction and effects of exchange and Coulomb correlation—
these are equal to the sum of the electrostatic interaction between the positive
electron density at a point r; and the negative electron density contained in the
related hole at ro, summed over all coordinate space. Excluding the difference in
the kinetic energy of the non-interacting reference system and the real system of

interacting electrons the exchange-correlation functional may thus be expressed as:

1 Rge(r1;
_ = / dr, / PRCVICTGL ), (2.65)
2 12

T'he missing kinetic energy contribution can be incorporated into the exchange-

correlation hole via the adiabatic-connection.®® This will not be described here.
except to point out that it has no effect on the formal properties of the hole and

vields a so called coupling-constant averaged exchange-correlation hole hy.(ry;T3),

which satisfies the relation:

/dI'l/dI'Q—Ll h rl) r2)j (266)

a complete, albeit theoretical, expression for the exchange-correlation functional.
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Local Density Approximation

One of the simplest ways to approximate the exchange-correlation functional is
the local density approzimation (LDA), the details of which were included in the
original paper by Kohn and Sham.*® This states that assuming the electron density

is sufficiently slowly varying the exchange-correlation energy can be calculated from:

ELPA((r)] = / drp(r)eae(p(r)) (2.67)

where €,.(p(r)) is the exchange-correlation energy per particle of a uniform electron
gas of density p(r). The quantity £,.(p(r)) can be split into separate exchange and

correlation contributions, such that:

ze(p(r)) = ex(p(r)) + ec(p(r)), (2.68)

where £,(p(r)) is the exchange energy per particle of a homogeneous electron gas of

density p(r), which based on work by Slater,®* is normally calculated as:

3 5/3p(r)

a(p(r)) = =/ =, (2.69)

and ¢.(p(r)) is the correlation energy per particle of a homogeneous electron gas of
density p(r), for which analytical expressions have been developed by Vosko, Wilk
and Nusair®® and Perdew and Wang,*® based on quantum Monte-Carlo simulations
of the homogeneous electron gas by Caperly and Alder.®” These are often referred
to as the VWN and PW92 correlation tunctionals, respectively.

The local density approximation also exists in an unrestricted version, known
as the local spin-density approximation, where the energy is a functional of the two

spin-densities, p,(r) and pg(r), instead of the electron density p(r), such that:

EE (pa(x).ps(x) = [ drp(e)eae(p(e)) pa(r)ps(r). (2.70)

Somewhat surprisingly, considering that the electron density in most atoms and
molecules is far from slowly varying, the local density approximation has proven

quite successful, particularly in the calculation of equilibrium geometries. This is
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attributed to the fact that the exchange-correlation hole of a uniform electron gas,
which is used as a model for the real hole, satisfies the most important relations of a
true hole,”® such as those given by equations (2.62), (2.63) and (2.64). In addition,
although the exact shapes of the model and real holes may differ considerably, it is
the spherical average which 1s used to calculate the exchange-correlation energy and
these are in much better agreement.

Unfortunately however, the local density approximation fails to produce accurate
energetic data. It gives an average absolute error of 36kcal/mol for the atomisation
energies of those molecules in the G2 data set,’® which is better than Hartree-Fock
level calculations, but still far from experimental accuracy. It also pertorms poorly

for hydrogen-bonded systems.”® These inadequacies have led to the search for better

approximate functionals.

Generalised Gradient Approximation

The first step taken to improve the local density approximation was to try and take
into account the inhomogeneity of the electron density of real systems, by using
information not only about the density p(r), at a point r, but also its gradient Vp(r).
The earliest attempt of this nature was the gradient expansion approzrimation (GEA).
In fact, functionals of this type proved little better, since the exchange-correlation
holes associated with them did not exhibit the most important physical properties
of a true hole, such as those given by equations (2.62), (2.63) and (2.64). It was
thus soon proceeded by the generalised gradient approrimation (GGA), which not
only used information about the density and its gradient, but also enforced most ot

the important hole properties. Functionals of this type are denoted:

Ez " [pa(r), ps(r)] = / dr f(pa(r), ps(r), Vpa(r), Vps(r)). (2.71)

and are usually constructed from separate exchange and correlation contributions:

Eﬁ:GA [pa(r),. pﬂ(r)] — EEGA [pa: (r), pﬁ(r)] T EfGA[pa (r), pﬁ(r)]* (2-72)
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The precise forms of E¢“4[p,(r), ps(r)] and ES“4[p,(r), ps(r)] are complicated

and will not be discussed here, except to say that they are usually developed on
the basis of the accuracy of the results they deliver, rather than any physically
meaningful concepts. Indeed, many contain empirical parameters.

Some of the most established gradient-corrected exchange functionals, are those
suggested by Becke (B),*” Perdew and Wang (PW91)%%:%2 and Perdew, Burke and
Ernzerhof (PBE),%>%* while for gradient corrected correlation functionals those pro-

posed by Lee, Yang and Parr (LYP)® and Perdew and Wang (PW91)%h%% are

amongst the most frequently used.

In theory any combination of exchange and correlation functional is accept-
able, however certain pairs have become synonomous. The Becke exchange func-
tional is often used in conjunction with the Lee, Yang and Parr correlation func-
tional to give the BLYP exchange-correlation functional. In addition, the Perdew
and Wang exchange and correlation functionals are often coupled together to give
the PW91PW91 exchange-correlation functional. These are the two exchange-

correlation functionals used in this work.

The generalised gradient approximation leads to much improved energetic data,
with the average absolute error for the atomisation energies of those molecules in the

G2 data set being reduced to 5-7kcal/mol.”® It also performs better for hydrogen-

bonded systems.°”

Hybrid Functionals

More recently, several exchange-correlation functionals have been proposed which
incorporate a fraction of exact Hartree-Fock exchange, known as hybrid functionals.
The most common functional of this type is the B3LYP functional of Becke.®®
Hybrid functionals have proved to be marginally more accurate than gradient
corrected functionals with an average absolute error for the atomisation energies of
those molecules in the G2 data set of just 2-3kcal/mol.”® In spite of this, they have

still to attain the popularity of gradient corrected functionals.
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Semiempirical Methods

High level ab initio calculations based on Hartree-Fock and density functional theory
have proved successful in reproducing the properties and behaviour of many chemical
systems to experimental accuracy. Until recent years however, their application to
all but the smallest systems was prohibited by the huge amount of computational
resources required. Historically then, while computational resources were limited,
more approximate semiempirical methods were developed to enable the quantum
mechanical treatment of much larger systems.

In methodology, semiempirical methods lie somewhere in between ab initio and
classical simulation. They are quantum mechanical in the sense that they have
explicit representation ot electrons, but are similar to classical simulation methods
in that they also utilise empirical parameters derived from experiment.

Most modern semiempirical techniques are based on the Hartree-Fock method,
but simplity the calculations by the approximation of many of the difficult-to-
calculate integrals (similar in form to those present in equation 2.15). These are
elther set to zero or approximated by a parameter-dependent function derived from
experiment or ab initio calculations. In addition, all semiempirical methods per-
torm only valence electron calculations, that is they assume the inner shell electrons
(which play little part in chemical behaviour) to be part of the nucleus, acting as
an unpolarisable core. This is implemented using pseudopotentials similar to those
described in Section 2.3.2. Together, these approximations, result in a significant
reduction in computational effort.

T'here are advantages and disadvantages of introducing empirical parameters into
the Hartree-Fock scheme. On the one hand, it is suggested that when parameters
are derived from essentially exact experimental results, they in some ill-defined way
account for electron correlation and results better than those from Hartree-Fock
calculations can be obtained.?” Obviously when parameters have been determined

from Hartree-Fock calculations themselves this is impossible. On the other hand,
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just as is the case for force-fields used in classical simulations, there is a question as

to how well a particular semiempirical method is able to simulate the properties of

compounds dissimilar to those from which 1t was parameterised.

A number of semiempirical methods exist, which differ mainly in the integrals
that they approximate and how they are approximated. The most common are:
Complete Neglect of Differential Overlap (CNDO),*"% Modified Intermediate Ne-
glect of Differential Overlap 3 (MINDO/3).%? Austin Model 1 (AM1)™ and Paramet-
ric Method Number 3 (PM3).”1>* A useful guide to the most suitable semiempirical

parameterisations for the study of different types of compound is given by Stewart.™

Summary

First principles simulations model the interaction of electrons and nuclei by the
approximate solution of the equations of quantum mechanics. This allows them to
simulate many important phenomena that depend explicitly on electron dynamics,
such as bond making-bond breaking, which 1s impossible with classical methods.

Several established first principles methods exist, which differ mainly in the way
they treat electron correlation: Hartree-Fock theory includes Fermi correlation by
the use of an antisymmetric many-electron wavefunction, but completely neglects
Coulomb correlation; Mgller-Plesset perturbation theory treats the effect of electron
correlation as a perturbation, which can be calculated; and configuration interaction
includes electron correlation by the use of a multi-electron wavetunction that is an
expansion of ground and excited states. The latter two methods deliver extremely
accurate results, but their use 1s often prohibited by the large computational cost,
related 1n part to the non-local way they calculate Fermi correlation.

Density functional theory however, uses a local exchange-correlation functional
to account for electron correlation effects. This makes it the most efficient way to
include electron correlation in a calculation. As such, it delivers accurate energies

and properties at a relatively low computational cost.
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Simulation of Clay Minerals

Until relatively recently simulation studies of clay minerals were quite rare. In view

of the size and complex nature ot their structure, they were considered inaccessible
as systems to model. It is only with advances in computing hardware and algorithms
that theoretical studies of clay minerals have become more common.

Modelling of clay minerals can be particularly helpful to materials scientists
since information from experimental methods that analyse clay minerals and their
interfaces at the atomic scale are often difficult to interpret. In addition, the small
particle size of clay minerals (typically 2-10 pm), combined with the nature of the
natural materials, often precludes the use of single-crystal diffraction techniques in
structure determination, leading to ambiguities in crystal structure.?

The majority of theoretical investigations of clay minerals have been carried out
using classical simulation methods, which are well suited to the study of phenomena
governed predominantly by non-bonded interactions, but unable to model processes
which involve electron dynamics. Electronic structure calculations of clay minerals,
which are the focus of the present work, have been inhibited by the computational
resources needed to simulate a realistically-sized model. In order to make them more
tractable it has been commonplace to approximate the structure of clay minerals by

non-periodic, cluster models.*™* However, a reduction in computational cost comes

at a price and it is almost always necessarv to fix some atoms in a cluster model

o1
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to reduce deformation at the edges, where broken bonds are simply saturated by
hydrogen atoms. The use of periodic models is thus becoming more frequent,” 1!
since they are better able to describe the extended crystal lattice and the confined
nature of the interlayer, though care has to be taken to minimise finite-size effects.

In this chapter we survey studies of clay minerals by first principles methods,

with a focus on the results of the simulations and the chemical insight they provide.

Layer Structure

[t has already been mentioned that the small particle size of clay minerals has in
many cases prevented their study by single-crystal X-ray diffraction. Therefore clay
mineral structures optimised by quantum methods are of real significance.

Early investigations reported relevant structural parameters, such as bond lengths
and angles, obtained from optimisations of small cluster models of clay minerals.” "®
The formulae and associated references of selected models are listed in Table 3.1.
The size of the clusters enabled their optimisation by quantum methods. In general,
slightly shorter bond lengths and larger angles were determined from Hartree-Fock
calculations compared to those from perturbation and density functional methods,
which gave similar values. This is particularly evident in the prominent study of
Teppen et al.,”® who optimised an array of pertinent clay mineral cluster models,
using a range of ab initio methods and localised basis sets. The importance of their
results proved two-fold. In the first instance they showed that electron-correlation
must be included in the optimisations of clay mineral cluster models in order to
obtain reasonably accurate structures. In addition, they provide a database for the
development of force-field parameters for classical simulations of clay minerals.

One of the problems with such small cluster models is that they do not define
a particular clay mineral—their limited size prohibits representation of the subtle

variations in layer structures. lo obtain more specific structural data, much larger

cluster models, discernible as particular clay minerals types, have also been studied.



CHAPTER 3. SIMULATION OF CLAY MINERALS | 53

Table 3.1: Structural Studies of Clay Minerals with Cluster Models

model associated reference(s)

Si(OH)4 Luke et al.,”® Kubicki et al.,’? Strandh et al.”®
AI(OH), Luke et al.,”® Kubicki et al.,”* Teppen et al.”®
Al(OH)g~ Bougeard et al.”’

Al(OH)3(H20)3 Teppen et al.”®

Si(OH)3-0O-Si(OH)3 Kubicki et al.,”* Strandh et al.”®
Si(OH)3-0O-Al(OH)3 |~ Kubicki et al.,”* Teppen et al.”®
Si(OH)3-O-AI(OH)2(H20)3 Teppen et al.”®
Al{OH)32(H20)2-(OH)2-Al(OH)2(H20)3 Teppen et al.,’® Sainz-Diaz et al.”®
Mg(OH)2(H20)2-(OH)2-Mg(OH)2(H20)2 Sainz-Diaz et al.”®

For example, Gorb et al. used SigAlgO39H 3 based clusters to determine geometrical
parameters of the closely related clay minerals pyrophyllite and montmorillonite and
reported good agreement with available experimental data.®

More recently, structural data has been reported from studies of periodic clay
minerals models,”>™® listed in Table 3.2. Periodic models are much better able
to represent the extended layer structure of clay minerals and also do not suffer
from edge-effects. It is interesting to note that all recent studies of periodic models
of clay minerals have employed a density functional method in conjunction with
pseudopotentials and a planewave basis set,” ™ which indicates the a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>