23 research outputs found

    t(11;17)(p15;q21) involving the NUP98 gene is a rare event in adult acute myeloid leukemia.

    Get PDF
    Review on t(11;17)(p15;q21) involving the NUP98 gene is a rare event in adult acute myeloid leukemia

    t(11;17)(p15;q21) NUP98/?

    Get PDF
    Review on t(11;17)(p15;q21) NUP98/?, with data on clinics, and the genes involved

    The CADM1 tumor suppressor gene is a major candidate gene in MDS with deletion of the long arm of chromosome 11.

    Get PDF
    Myelodysplastic syndromes (MDS) represent a heterogeneous group of clonal hematopoietic stem cell disorders characterized by ineffective hematopoiesis leading to peripheral cytopenias and in a substantial proportion of cases to acute myeloid leukemia. The deletion of the long arm of chromosome 11, del(11q), is a rare but recurrent clonal event in MDS. Here, we detail the largest series of 113 cases of MDS and myelodysplastic syndromes/myeloproliferative neoplasms (MDS/MPN) harboring a del(11q) analyzed at clinical, cytological, cytogenetic, and molecular levels. Female predominance, a survival prognosis similar to other MDS, a low monocyte count, and dysmegakaryopoiesis were the specific clinical and cytological features of del(11q) MDS. In most cases, del(11q) was isolated, primary and interstitial encompassing the 11q22-23 region containing ATM, KMT2A, and CBL genes. The common deleted region at 11q23.2 is centered on an intergenic region between CADM1 (also known as Tumor Suppressor in Lung Cancer 1) and NXPE2. CADM1 was expressed in all myeloid cells analyzed in contrast to NXPE2. At the functional level, the deletion of Cadm1 in murine Lineage-Sca1+Kit+ cells modifies the lymphoid-to-myeloid ratio in bone marrow, although not altering their multilineage hematopoietic reconstitution potential after syngenic transplantation. Together with the frequent simultaneous deletions of KMT2A, ATM, and CBL and mutations of ASXL1, SF3B1, and CBL, we show that CADM1 may be important in the physiopathology of the del(11q) MDS, extending its role as tumor-suppressor gene from solid tumors to hematopoietic malignancies

    Refinement of 1p36 Alterations Not Involving PRDM16 in Myeloid and Lymphoid Malignancies

    Get PDF
    Fluorescence in situ hybridization was performed to characterize 81 cases of myeloid and lymphoid malignancies with cytogenetic 1p36 alterations not affecting the PRDM16 locus. In total, three subgroups were identified: balanced translocations (N = 27) and telomeric rearrangements (N = 15), both mainly observed in myeloid disorders; and unbalanced non-telomeric rearrangements (N = 39), mainly observed in lymphoid proliferations and frequently associated with a highly complex karyotype. The 1p36 rearrangement was isolated in 12 cases, mainly myeloid disorders. The breakpoints on 1p36 were more widely distributed than previously reported, but with identifiable rare breakpoint cluster regions, such as the TP73 locus. We also found novel partner loci on 1p36 for the known multi-partner genes HMGA2 and RUNX1. We precised the common terminal 1p36 deletion, which has been suggested to have an adverse prognosis, in B-cell lymphomas [follicular lymphomas and diffuse large B-cell lymphomas with t(14;18)(q32;q21) as well as follicular lymphomas without t(14;18)]. Intrachromosomal telomeric repetitive sequences were detected in at least half the cases of telomeric rearrangements. It is unclear how the latter rearrangements occurred and whether they represent oncogenic events or result from chromosomal instability during oncogenesis

    Cytogenetic Evolution of Human Ovarian Cell Lines Associated with Chemoresistance and Loss of Tumorigenicity

    No full text
    In order to identify genomic changes associated with a resistant phenotype acquisition, we used comparative genomic hybridization (CGH) to compare a human ovarian cell line, Igrov1, and four derived subcell lines, resistant to vincristine and presenting a reversion of malignant properties. Multicolor FISH (Multiplex‐FISH and Spectral Karyotype) and conventional FISH are also used to elucidate the karyotype of parental cell line. The drug‐resistant subcell lines displayed many chromosomal abnormalities suggesting the implication of different pathways leading to a multidrug resistance phenotype. However, these cell lines shared two common rearrangements: an unbalanced translocation der(8)t(8;13)(p22;q?) and a deletion of the 11p. These chromosomal imbalances could reflected the acquisition of the chemoresistance (der(8)) or the loss of tumorigenicity properties (del(11p)). Colour figure can be viewed on http://www.esacp.org/acp/2003/25‐3/struski.htm

    Overexpression of CEBPA resulting from the translocation t(14;19)(q32;q13) of human precursor B acute lymphoblastic leukemia

    No full text
    Subtle variation in the expression or function of a small group of transcription factors can drive leukemogenesis. The CEBPA protein is known to regulate the balance between cell proliferation and differentiation during early hematopoietic development and myeloid differentiation. In human myeloid leukemia, CEBPA is frequently inactivated by mutation and indirect and posttranslational mechanisms, in keeping with tumor suppressor properties. We report that CEBPA is activated by juxtaposition to the immunoglobulin gene enhancer upon its rearrangement with the immunoglobulin heavy-chain locus in precursor B-cell acute lymphoblastic leukemia harboring t(14;19)(q32;q13). Overexpression of apparently normal CEBPA RNA or protein was observed in 6 patients. These data indicate that CEBPA may exhibit oncogenic as well as tumor suppressor properties in human leukemogenesis.<br/

    Myeloid malignancies with translocation t(4;12)(q11‐13;p13): molecular landscape, clonal hierarchy and clinical outcomes

    No full text
    International audienceTranslocation t(4;12)(q11-13;p13) is a recurrent but very rare chromosomal aberration in acute myeloid leukaemia (AML) resulting in the non-constant expression of a CHIC2/ETV6 fusion transcript. We report clinico-biological features, molecular characteristics and outcomes of 21 cases of t(4;12) including 19 AML and two myelodysplastic syndromes (MDS). Median age at the time of t(4;12) was 78 years (range, 56–88). Multilineage dysplasia was described in 10 of 19 (53%) AML cases and CD7 and/or CD56 expression in 90%. FISH analyses identified ETV6 and CHIC2 region rearrangements in respectively 18 of 18 and 15 of 17 studied cases. The t(4;12) was the sole cytogenetic abnormality in 48% of cases. The most frequent associated mutated genes were ASXL1 (n = 8/16, 50%), IDH1/2 (n = 7/16, 44%), SRSF2 (n = 5/16, 31%) and RUNX1 (n = 4/16, 25%). Interestingly, concurrent FISH and molecular analyses showed that t(4;12) can be, but not always, a founding oncogenic event. Median OS was 7.8 months for the entire cohort. In the 16 of 21 patients (76%) who received antitumoral treatment, overall response and first complete remission rates were 37% and 31%, respectively. Median progression-free survival in responders was 13.7 months. Finally, t(4;12) cases harboured many characteristics of AML with myelodysplasia-related changes (multilineage dysplasia, MDS-related cytogenetic abnormalities, frequent ASXL1 mutations) and a poor prognosis
    corecore