12 research outputs found

    Non-invasive intravital imaging of cellular differentiation with a bright red-excitable fluorescent protein

    Get PDF
    A method for non-invasive visualization of genetically labelled cells in animal disease models with micron-level resolution would greatly facilitate development of cell-based therapies. Imaging of fluorescent proteins (FPs) using red excitation light in the “optical window” above 600 nm is one potential method for visualizing implanted cells. However, previous efforts to engineer FPs with peak excitation beyond 600 nm have resulted in undesirable reductions in brightness. Here we report three new red-excitable monomeric FPs obtained by structure-guided mutagenesis of mNeptune, previously the brightest monomeric FP when excited beyond 600 nm. Two of these, mNeptune2 and mNeptune2.5, demonstrate improved maturation and brighter fluorescence, while the third, mCardinal, has a red-shifted excitation spectrum without reduction in brightness. We show that mCardinal can be used to non-invasively and longitudinally visualize the differentiation of myoblasts and stem cells into myocytes in living mice with high anatomical detail

    IL-2, -4, and -15 Differentially Regulate O

    No full text

    An Alternate Core 2 ÎČ1,6- N

    No full text

    Pulsar scintillation studies with LOFAR:II. Dual-frequency scattering study of PSR J0826+2637 with LOFAR and NenuFAR

    Get PDF
    Interstellar scattering (ISS) of radio pulsar emission can be used as a probe of the ionized interstellar medium (IISM) and causes corruptions in pulsar timing experiments. Two types of ISS phenomena (intensity scintillation and pulse broadening) are caused by electron density fluctuations on small scales (&lt; 0.01 au). Theory predicts that these are related, and both have been widely employed to study the properties of the IISM. Larger scales (∌1 – 100 au) cause measurable changes in dispersion and these can be correlated with ISS observations to estimate the fluctuation spectrum over a very wide scale range. IISM measurements can often be modelled by a homogeneous power-law spatial spectrum of electron density with the Kolmogorov (−11/3) spectral exponent. Here, we aim to test the validity of using the Kolmogorov exponent with PSR J0826+2637. We do so using observations of intensity scintillation, pulse broadening and dispersion variations across a wide fractional bandwidth (20–180 MHz). We present that the frequency dependence of the intensity scintillation in the high-frequency band matches the expectations of a Kolmogorov spectral exponent, but the pulse broadening in the low-frequency band does not change as rapidly as predicted with this assumption. We show that this behaviour is due to an inhomogeneity in the scattering region, specifically that the scattering is dominated by a region of transverse size ∌40 au. The power spectrum of the electron density, however, maintains the Kolmogorov spectral exponent from spatial scales of 5 × 10−6 au to ∌100 au.</p

    Wide-band Simultaneous Observations of Pulsars: Disentangling Dispersion Measure and Profile Variations

    Get PDF
    20 Pages, 14 Figures, Accepted for publication in Astronomy & AstrophysicsInternational audienceDispersion in the interstellar medium is a well known phenomenon that follows a simple relationship, which has been used to predict the time delay of dispersed radio pulses since the late 1960s. We performed wide-band simultaneous observations of four pulsars with LOFAR (at 40-190 MHz), the 76-m Lovell Telescope (at 1400 MHz) and the Effelsberg 100-m Telescope (at 8000 MHz) to test the accuracy of the dispersion law over a broad frequency range. In this paper we present the results of these observations which show that the dispersion law is accurate to better than 1 part in 100000 across our observing band. We use this fact to constrain some of the properties of the ISM along the line-of-sight and use the lack of any aberration or retardation effects to determine upper limits on emission heights in the pulsar magnetosphere. We also discuss the effect of pulse profile evolution on our observations, and the implications that it could have for precision pulsar timing projects such as the detection of gravitational waves with pulsar timing arrays

    Pulsar Scintillation Studies with LOFAR: II. Dual-frequency scattering study of PSR J0826+2637 with LOFAR and NenuFAR

    Get PDF
    International audienceInterstellar scattering (ISS) of radio pulsar emission can be used as a probe of the ionised interstellar medium (IISM) and causes corruptions in pulsar timing experiments. Two types of ISS phenomena (intensity scintillation and pulse broadening) are caused by electron density fluctuations on small scales (< 0.01 AU). Theory predicts that these are related, and both have been widely employed to study the properties of the IISM. Larger scales (∌\sim1-100 AU) cause measurable changes in dispersion and these can be correlated with ISS observations to estimate the fluctuation spectrum over a very wide scale range. IISM measurements can often be modeled by a homogeneous power-law spatial spectrum of electron density with the Kolmogorov (−11/3-11/3) spectral exponent. Here we aim to test the validity of using the Kolmogorov exponent with PSR~J0826+2637. We do so using observations of intensity scintillation, pulse broadening and dispersion variations across a wide fractional bandwidth (20 -- 180 MHz). We present that the frequency dependence of the intensity scintillation in the high frequency band matches the expectations of a Kolmogorov spectral exponent but the pulse broadening in the low frequency band does not change as rapidly as predicted with this assumption. We show that this behavior is due to an inhomogeneity in the scattering region, specifically that the scattering is dominated by a region of transverse size ∌\sim40 AU. The power spectrum of the electron density, however, maintains the Kolmogorov spectral exponent from spatial scales of 5×10−6\times10^{-6} AU to ∌\sim100 AU

    Pulsar Scintillation Studies with LOFAR: II. Dual-frequency scattering study of PSR J0826+2637 with LOFAR and NenuFAR

    No full text
    International audienceInterstellar scattering (ISS) of radio pulsar emission can be used as a probe of the ionised interstellar medium (IISM) and causes corruptions in pulsar timing experiments. Two types of ISS phenomena (intensity scintillation and pulse broadening) are caused by electron density fluctuations on small scales (< 0.01 AU). Theory predicts that these are related, and both have been widely employed to study the properties of the IISM. Larger scales (∌\sim1-100 AU) cause measurable changes in dispersion and these can be correlated with ISS observations to estimate the fluctuation spectrum over a very wide scale range. IISM measurements can often be modeled by a homogeneous power-law spatial spectrum of electron density with the Kolmogorov (−11/3-11/3) spectral exponent. Here we aim to test the validity of using the Kolmogorov exponent with PSR~J0826+2637. We do so using observations of intensity scintillation, pulse broadening and dispersion variations across a wide fractional bandwidth (20 -- 180 MHz). We present that the frequency dependence of the intensity scintillation in the high frequency band matches the expectations of a Kolmogorov spectral exponent but the pulse broadening in the low frequency band does not change as rapidly as predicted with this assumption. We show that this behavior is due to an inhomogeneity in the scattering region, specifically that the scattering is dominated by a region of transverse size ∌\sim40 AU. The power spectrum of the electron density, however, maintains the Kolmogorov spectral exponent from spatial scales of 5×10−6\times10^{-6} AU to ∌\sim100 AU
    corecore