52 research outputs found

    The use of high halide-ion concentrations and automated phasing procedures for the structural analysis of BclA, the major component of the exosporium of Bacillus anthracis spores.

    Get PDF
    International audienceThe structure determination of the recombinant form of BclA, the major protein component of Bacillus anthracis exosporium, involved soaking in a high concentration of potassium iodide as the means of obtaining a good-quality heavy-atom derivative. The data to 2 angstroms resolution collected on a laboratory source were of sufficient quality to allow successful phasing and chain tracing by automated methods

    Sequential domain assembly of ribosomal protein S3 drives 40S subunit maturation

    Get PDF
    Eukaryotic ribosomes assemble by association of ribosomal RNA with ribosomal proteins into nuclear precursor particles, which undergo a complex maturation pathway coordinated by non-ribosomal assembly factors. Here, we provide functional insights into how successive structural re-arrangements in ribosomal protein S3 promote maturation of the 40S ribosomal subunit. We show that S3 dimerizes and is imported into the nucleus with its N-domain in a rotated conformation and associated with the chaperone Yar1. Initial assembly of S3 with 40S precursors occurs via its C- domain, while the N-domain protrudes from the 40S surface. Yar1 is replaced by the assembly factor Ltv1, thereby fixing the S3 N-domain in the rotated orientation and preventing its 40S association. Finally, Ltv1 release, triggered by phosphorylation, and flipping of the S3 N-domain into its final position results in the stable integration of S3. Such a stepwise assembly may represent a new paradigm for the incorporation of ribosomal proteins

    Cortisol Interaction with Aquaporin-2 Modulates Its Water Permeability: Perspectives for Non-Genomic Effects of Corticosteroids

    No full text
    Aquaporins (AQPs) are water channels widely distributed in living organisms and involved in many pathophysiologies as well as in cell volume regulations (CVR). In the present study, based on the structural homology existing between mineralocorticoid receptors (MRs), glucocorticoid receptors (GRs), cholesterol consensus motif (CCM) and the extra-cellular vestibules of AQPs, we investigated the binding of corticosteroids on the AQP family through in silico molecular dynamics simulations of AQP2 interactions with cortisol. We propose, for the first time, a putative AQPs corticosteroid binding site (ACBS) and discussed its conservation through structural alignment. Corticosteroids can mediate non-genomic effects; nonetheless, the transduction pathways involved are still misunderstood. Moreover, a growing body of evidence is pointing toward the existence of a novel membrane receptor mediating part of these rapid corticosteroids’ effects. Our results suggest that the naturally produced glucocorticoid cortisol inhibits channel water permeability. Based on these results, we propose a detailed description of a putative underlying molecular mechanism. In this process, we also bring new insights on the regulatory function of AQPs extra-cellular loops and on the role of ions in tuning the water permeability. Altogether, this work brings new insights into the non-genomic effects of corticosteroids through the proposition of AQPs as the membrane receptor of this family of regulatory molecules. This original result is the starting point for future investigations to define more in-depth and in vivo the validity of this functional model

    Cortisol Interaction with Aquaporin-2 Modulates Its Water Permeability: Perspectives for Non-Genomic Effects of Corticosteroids

    No full text
    International audienceAquaporins (AQPs) are water channels widely distributed in living organisms and involved in many pathophysiologies as well as in cell volume regulations (CVR). In the present study, based on the structural homology existing between mineralocorticoid receptors (MRs), glucocorticoid receptors (GRs), cholesterol consensus motif (CCM) and the extra-cellular vestibules of AQPs, we investigated the binding of corticosteroids on the AQP family through in silico molecular dynamics simulations of AQP2 interactions with cortisol. We propose, for the first time, a putative AQPs corticosteroid binding site (ACBS) and discussed its conservation through structural alignment. Corticosteroids can mediate non-genomic effects; nonetheless, the transduction pathways involved are still misunderstood. Moreover, a growing body of evidence is pointing toward the existence of a novel membrane receptor mediating part of these rapid corticosteroids' effects. Our results suggest that the naturally produced glucocorticoid cortisol inhibits channel water permeability. Based on these results, we propose a detailed description of a putative underlying molecular mechanism. In this process, we also bring new insights on the regulatory function of AQPs extra-cellular loops and on the role of ions in tuning the water permeability. Altogether, this work brings new insights into the non-genomic effects of corticosteroids through the proposition of AQPs as the membrane receptor of this family of regulatory molecules. This original result is the starting point for future investigations to define more in-depth and in vivo the validity of this functional model

    Regulation of DEAH/RHA Helicases by G-Patch Proteins

    No full text
    RNA helicases from the DEAH/RHA family are present in all the processes of RNA metabolism. The function of two helicases from this family, Prp2 and Prp43, is regulated by protein partners containing a G-patch domain. The G-patch is a glycine-rich domain discovered by sequence alignment, involved in protein-protein and protein-nucleic acid interaction. Although it has been shown to stimulate the helicase’s enzymatic activities, the precise role of the G-patch domain remains unclear. The role of G-patch proteins in the regulation of Prp43 activity has been studied in the two biological processes in which it is involved: splicing and ribosome biogenesis. Depending on the pathway, the activity of Prp43 is modulated by different G-patch proteins. A particular feature of the structure of DEAH/RHA helicases revealed by the Prp43 structure is the OB-fold domain in C-terminal part. The OB-fold has been shown to be a platform responsible for the interaction with G-patch proteins and RNA. Though there is still no structural data on the G-patch domain, in the current model, the interaction between the helicase, the G-patch protein, and RNA leads to a cooperative binding of RNA and conformational changes of the helicase

    Plant Aquaporin Gating Is Reversed by Phosphorylation on Intracellular Loop D—Evidence from Molecular Dynamics Simulations

    No full text
    Aquaporins (AQPs) constitute a wide and ancient protein family of transmembrane channels dedicated to the regulation of water exchange across biological membranes. In plants, higher numbers of AQP homologues have been conserved compared to other kingdoms of life such as in animals or in bacteria. As an illustration of this plant-specific functional diversity, plasma membrane intrinsic proteins (PIPs, i.e., a subfamily of plant AQPs) possess a long intracellular loop D, which can gate the channel by changing conformation as a function of the cellular environment. However, even though the closure of the AQP by loop D conformational changes is well described, the opening of the channel, on the other hand, is still misunderstood. Several studies have pointed to phosphorylation events as the trigger for the transition from closed- to open-channel states. Nonetheless, no clear answer has been obtained yet. Hence, in order to gain a more complete grasp of plant AQP regulation through this intracellular loop D gating, we investigated the opening of the channel in silico through molecular dynamics simulations of the crystallographic structure of Spinacia oleracea PIP2;1 (SoPIP2;1). Through this technique, we addressed the mechanistic details of these conformational changes, which eventually allowed us to propose a molecular mechanism for PIP functional regulation by loop D phosphorylation. More precisely, our results highlight the phosphorylation of loop D serine 188 as a trigger of SoPIP2;1 water channel opening. Finally, we discuss the significance of this result for the study of plant AQP functional diversity

    Deciphering Molecular Mechanisms Involved in the Modulation of Human Aquaporins’ Water Permeability by Zinc Cations: A Molecular Dynamics Approach

    No full text
    Aquaporins (AQPs) constitute a wide family of water channels implicated in all kind of physiological processes. Zinc is the second most abundant trace element in the human body and a few studies have highlighted regulation of AQP0 and AQP4 by zinc. In the present work, we addressed the putative regulation of AQPs by zinc cations in silico through molecular dynamics simulations of human AQP0, AQP2, AQP4, and AQP5. Our results align with other scales of study and several in vitro techniques, hence strengthening the reliability of this regulation by zinc. We also described two distinct putative molecular mechanisms associated with the increase or decrease in AQPs’ water permeability after zinc binding. In association with other studies, our work will help deciphering the interaction networks existing between zinc and channel proteins

    Reverse NOE-pumping experiments.

    No full text
    <p>Expanded 1D NMR spectra recorded in D<sub>2</sub>O at 600 MHz and 308 K, pH 6.5 of c-di-GMP and 5′-pGpG alone (respectively left panels A-B and E-F) and with FimX-EAL (right panels C-D and G-H). Panels A, C, E and G: reference 1D-esgp experiments. Panels B, D, F and H: RNP experiments. (S = signals arising from buffer).</p

    Representation of the cavity in the dimer of FimX-EAL bound to pGpG.

    No full text
    <p>(A) The cavity is presented as an orange surface inside the FimX-EAL dimer. It is connected to the outside by two channels of different size. Left and right views are rotated by 180°. The corresponding electrostatic surface is represented in (B). The edges of both channels are negatively charged and forbid the ligand to escape from the cavity.</p
    • …
    corecore