
The use of high halide-ion concentrations and automated

phasing procedures for the structural analysis of BclA,

the major component of the exosporium of Bacillus

anthracis spores.
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émanant des établissements d’enseignement et de
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The structure determination of the recombinant form of BclA, the major protein component of

Bacillus anthracis exosporium, involved soaking in a high concentration of potassium iodide as the

means of obtaining a good-quality heavy-atom derivative. The data to 2 AÊ resolution collected on a

laboratory source were of suf®cient quality to allow successful phasing and chain tracing by

automated methods.

1. Introduction

The lethal disease anthrax is most commonly spread by spores of

Bacillus anthracis, a dormant cell form of certain bacilli characterized

by high resistance to chemicals and to environmental factors such as

heat and drought. The spore is encased in a thick multilayered

structure, the coat, which is surrounded by the exosporium. The latter

is composed of a paracrystalline basal layer with a hexagonal lattice

structure and a hair-like outer region. Isolated B. anthracis exosporia

contain at least 12 major protein components, the most abundant of

which is BclA, a glycosylated protein with an internal collagen-like

region (Sylvestre et al., 2002).

BclA has only recently been identi®ed and most studies have

focused on immunological, genetic and electron-microscopy studies,

with little work having been carried out on the biochemistry of this

protein. In particular, no data are available on its structure, although

it can be inferred from the presence of the collagen-like region that it

will be unique. From recent ¯uorescent confocal microscopy studies it

is known that upon contact with the epithelial layers of the lung,

B. anthracis spores are rapidly phagocytosed by circulating macro-

phages (Guidi-Rontani, 2002). Since BclA is the most abundant

component of the ®laments of the exosporium of B. anthracis

(Sylvestre et al., 2003) and is the major antigen of the surface of the

spore, it may play a central role in the invasion of lung alveolar

macrophages. Thus, knowledge of its structure should have implica-

tions for understanding the function of the outermost layer of the

spores, which in turn will advance our understanding of the ®rst

stages of infection by this lethal pathogen.

2. Materials and methods

2.1. Expression and purification

The bclA gene was PCR-ampli®ed from B. anthracis strain CEB

9732 genomic DNA using the following primers: O1, 50-GGAATT-

CCATATGGCATTTGACCCTAAT-30 carrying a NdeI site (under-

lined) and O2, 50-TTAACCGGCGGCCGCTTAGTGATGGTGA-

TGGTGATGAGCAACTTTTTCAATAAT-30 carrying a NotI site

(underlined), the stop codon (bold) and six histidine codons (italics).

The ®rst 18 codons of bclA, corresponding to the signal peptide of the

protein, were omitted. The ampli®ed fragment was cloned NdeI/NotI

in pET9sn1, a derivative of pET9a (Novagen), in which a NotI site

was inserted between the Bpu1102 and the NdeI sites. The construct

was checked by oligonucleotide sequencing (Genome Express,

France).

The plasmid encoding the His-tagged BclA protein was freshly

transformed into the Rosetta strain of Escherichia coli (Novabiogen).

Protein expression was induced by adding 1 mM IPTG to exponen-
# 2005 International Union of Crystallography
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tially growing cultures in LB medium plus 50 mg mlÿ1 kanamycin (2 l)

at 310 K. The induced cultures were then grown overnight at 288 K in

LB medium plus 50 mg mlÿ1 kanamycin. The cells were washed with

50 mM NaH2PO4 pH 8, 0.3 M NaCl. The pellet was taken up in 20 ml

of the same buffer plus 10 mM imidazole and the cells were broken

by sonication. The crude extract was loaded onto a Ni±NTA column

(5 ml, Hi-Trap Chelating HP, Amersham Bioscience) and puri®cation

at 277 K was carried out using AÈ kta Fast Protein Liquid Chromato-

graphy apparatus. Elution was performed with a linear gradient of

imidazole (10±250 mM). The fractions containing BclA were then

pooled and puri®ed by gel-®ltration chromatography on a Superdex

75 column (Amersham Biosciences) using 50 mM Tris±HCl pH 8, 1 M

NaCl. The ®nal puri®cation step was carried out by Mono-Q ion-

exchange chromatography in 50 mM Tris±HCl pH 8.5 using a linear

gradient of NaCl (0±1 M) to elute the protein.

2.2. Collagenase activity

Lyophilized type VII collagenase (Sigma) was taken up in 50 mM

Tris±HCl pH 7.5 to 1 mg mlÿ1 concentration. Activity was measured

at 298 K in 50 mM Tris±HCl pH 7.5 containing 1 mM calcium for up

to 1 h. Solubilized proteins were analysed by SDS±PAGE under

reducing conditions (5% �-mercaptoethanol) in 12% polyacrylamide

slab gels according to the method of Laemmli (1970). Molecular-

weight (rainbow) markers (BioRad, Hercules, CA, USA) were run in

parallel.

2.3. Crystallization

Crystallization conditions were screened with Crystal Screen 1

from Hampton Research using the hanging-drop vapour-diffusion

technique. Hexagonal shaped crystals appeared using condition No.

41 [20%(w/v) PEG 4000, 20%(v/v) 2-propanol, 0.1 M Na HEPES pH

7.5]. The optimized conditions, 10 mg mlÿ1 protein in 50 mM Tris±

HCl pH 8, 300 mM NaCl mixed with an equal volume of well solution

containing 20%(w/v) PEG 4000, 20%(v/v) 2-propanol, 0.1 M sodium

cacodylate pH 6.5, gave crystals of up to 200±300 mm across and 100±

200 mm thick within 2±3 d.

2.4. Cryosolvent optimization

Initially, the crystals were transferred to a cryoprotectant solution

corresponding to the crystallization solution containing 5%(v/v)

glycerol (solution Cryo-1; Garman & Mitchell, 1996) for several

seconds and then plunged into liquid nitrogen. The diffraction

pattern extended to 2.4 AÊ resolution, but showed signs of crystal

damage. A test at room temperature showed that the crystals could

diffract to better than 1.8 AÊ resolution with low mosaic spread (0.3�).

We therefore tried adding different concentrations of glycerol, PEG

400, 2-propanol and MPD to the crystallizing solution (McFerrin &

Snell, 2002). The best results were obtained with a solution containing

0.1 M sodium cacodylate pH 6.5, 22.5%(w/v) PEG 4000 and 30%(v/v)

2-propanol (solution Cryo-2).

2.5. Data collection and processing

Data were collected on a Rigaku MicroMax-007 generator

equipped with a MAR345 detector mounted on a MAR Research

desktop beamline (dtb). Measurements were made both at room

temperature on crystals mounted in capillaries and at 100 K. All data

were processed using DENZO and SCALEPACK from the HKL

data-processing system (v.1.97.1; Otwinowski & Minor, 1997).

2.6. Heavy-atom-derivative search: soaks in high concentrations of

halide salts

The heavy-atom-derivative search was not aided by the peculiar

amino-acid composition of the protein: there are neither cysteines

nor methionines in the sequence and no histidines except for the

C-terminal 6�His tag. After an unsuccessful search with standard

heavy-atom compounds, we decided to soak the crystals in a high

concentration of halide ions (Dauter et al., 2000), choosing potassium

iodide because of its higher anomalous signal at 1.54 AÊ (Evans &

Bricogne, 2002). The crystals were soaked for 3±5 min in 1 M KI,

20%(w/v) PEG 4000, 20%(v/v) 2-propanol, 0.1 M sodium cacodylate

pH 6.5, then rapidly passed through cryoprotectant solution Cryo-1

and ¯ash-cooled in liquid nitrogen.

The crystals soaked in a high concentration of KI diffracted to

higher resolution (better than 1.7 AÊ ). We therefore also collected a

complete data set on a crystal soaked ®rst in 1 M KCl then in the

optimized cryoprotectant solution (Cryo-2) and ¯ash-cooled and

used that as the high-resolution native data set for the structure

re®nement.

2.7. Heavy-atom location and phasing

The SCALEPACK program (Otwinowski & Minor, 1997) was

used to evaluate the anomalous signal from heavy-atom-derivative

data sets. The data retained, together with a native data set, were

introduced without prior scaling into the autoSHARP procedure (de

La Fortelle & Bricogne, 1997). The results presented below were

obtained using different runs of autoSHARP and different combi-

nations of starting data sets. The complete cycle, including automatic

model-building with ARP/wARP (Morris et al., 2002), was requested

systematically. The program O (Jones et al., 1991) was used to build

side chains into the ARP/wARP result and the program REFMAC

from the CCP4 suite (Collaborative Computational Project, Number

4, 1994) was used for re®nement. In order to perform phasing

comparisons, we also used SHELXD (Schneider & Sheldrick, 2002)

for the location of anomalous scatterers and SHELXE (Sheldrick,

2002) for phasing. The search for atoms on special positions was

included in SHELXD with a SIRAS protocol.

3. Results and discussion

The crystal data show sixfold symmetry and the space group was

determined to be P6322, with one molecule in the asymmetric unit

and a solvent fraction of 0.54 and 0.515 for room-temperature and

frozen crystals, respectively. Table 1 gives the statistics for all data sets

used.

Consistent with the evaluation of the anomalous signal of the

different derivatives tested by SCALEPACK, autoSHARP runs
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Table 1
Data statistics for the crystals used.

Values in parentheses are for the highest resolution shell.

Crystal Native, RT Native, cryo KI KCl

Maximum resolution (AÊ ) 2.19 (2.27±2.19) 2.47 (2.56±2.47) 2.0 (2.07±2.0) 2.0 (2.12±2.0)
Unit-cell parameters (AÊ )
a 69.49 67.80 67.51 67.86
c 163.60 163.115 162.81 163.29

Mosaicity² (�) 0.288 0.561 1.194 0.443
Rsym³ 0.089 (0.268) 0.121 (0.339) 0.07 (0.162) 0.088 (0.314)
hIi/h�(I)i 17.6 (5.8) 11.3 (3.6) 20.8 (7.3) 30.9 (9.1)
Completeness 0.965 (0.915) 0.924 (0.728) 0.576 (0.661) 0.996 (0.985)
Redundancy 7.5 (6.5) 5.5 (4.5) 7.5 (7.5) 15 (13)

² As detemined by SCALEPACK. ³ Rsym =
P

h

P
i jI�h�i ÿ hI�h�ij=Ph

P
i I�h�.
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con®rmed that only KI derivative data were useful for heavy-atom

phasing. With a request for one site per heavy-atom data set, the

automatic procedure determined its location, calculated and re®ned

its phasing contribution, de®ned the correct hand of its coordinates

and, upon calculating a solvent-¯attened electron-density map, traced

a polypeptide chain corresponding to two-thirds of the expected

sequence. At the end of the procedure, we obtained electron density

of a quality suf®cient to place all side-chains unambiguously (Fig. 1a).

What were the limitations to this success? We performed a number

of test runs with different data sets and a different number of heavy-

atom sites requested in order to evaluate the approach. The phasing

statistics for these runs are summarized in Table 2. The phase

difference with the re®ned model after solvent ¯attenig was 34.91 and

23.96� for the initial 2.5 AÊ SIRAS(1) run and the 2.0 AÊ SIRAS(4)

run, respectively. For a comparison of

automatic phasing methods we decided to

use the SHELX package as well. Both

SHARP and SHELXD located the heavy

atoms in the same positions, with a slightly

different order for atoms with weak occu-

pancies (Table 3). The phases obtained with

SHELXE from atom positions from

SHELXD gave an interpretable electron-

density map with a map correlation coef®-

cient of 70.6%. Density modi®cation with

either DM or SOLOMON did not improve

this map and the phase difference calculated

with the re®ned model was 50.2�. In this

case, therefore, SHARP gave a better phase

set as input to automatic chain tracing.

3.1. Halide-ion sites

The KI derivative is characterized by one

strong site and four weak sites (Table 3).

The phasing quality is very good using just

the ®rst site; the supplementary sites only

improve the statistics to a small extent. The

anomalous signal from the iodide is suf®-

cient when the SAD procedure is used (at

1.54 AÊ , f 000 for iodine is 7 e). The isomor-

phous and anomalous signals are also very

good in the case of KI versus KCl data. Since

the high-resolution data used as `native'

were measured on a crystal soaked in a

similar solution as the derivative, but with

chloride instead of iodide, and the two data

sets are highly isomorphous, we looked at

solvent molecules in the re®ned structure.

The main iodide site is unique to the heavy-

atom derivative, lying in a shallow hydro-

phobic pocket of the protein (Fig. 2). This

indicates that even a simple iodide ion has

an af®nity for hydrophobic sites and need

not necessarily be combined with iodine to

form a triiodide ion as suggested by Evans &

Bricogne (2002).

The room-temperature (RT) data were

collected on a crystal that was not soaked in

a halide solution and these data can be used

to con®rm the speci®city of the iodide sites.

One of the minor iodide sites lies close to

the C-terminal His-tag tail, which is rather

disordered. While the ®rst of the six His

residues is clearly visible in all three crystal

forms, the next one is most ordered in the

frozen KCl crystals and totally disordered in

the room-temperature crystal. It is only

partially ordered in the frozen KI crystals,
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Figure 1
Examples of electron densities (2Fo ÿ Fc maps contoured at 1�) in the worst (left) and best (right) regions of the
map. (a) The result of the automatic phasing and tracing procedure; (b) SAD phasing; (c) the electron density
after re®nement. The re®ned structure is superimposed in all examples.
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where its side-chain density is close to a minor iodide position.

3.2. Data quality: effects of halides and cryoprotectant solutions

The automatic phasing procedure was initiated immediately,

before all parameters had been optimized, in order to evaluate heavy-

atom derivatives. The data quality was initially limited by our success

in correctly freezing the crystals, which in turn limited the resolution

and completeness of the data sets obtained (Table 1). We found that

soaking the crystal in a high concentration of salt (KCl or KI)

improved the diffraction limit of the crystals, while the composition of

the cryoprotectant solution was crucial for reducing their mosaicity.

The initial native data set was reasonably complete, although limited

to 2.5 AÊ resolution. The KI-derivative crystal was measured before

the optimal cryoprotectant solution had been de®ned and the data

set, although extending to 2 AÊ resolution, was rather incomplete

because of high mosaicity. This no doubt explains the poorer phasing

statistics for the SAD approach, yet the resulting solvent-¯attened

electron-density map was good enough for manual interpretation. A

short communications
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Figure 2
The major iodide site. The iodide ion is represented as a purple ball surrounded by
a 5� contour from the anomalous difference map. The structure is visible beneath
the surface, the properties of which are depicted from acidic (red) to hydrophobic
(green).

Table 2
Phasing statistics for different autoSHARP runs.

PP, phasing power = FH/E, where FH is the r.m.s. mean heavy-atom contribution and E is
the r.m.s. residual. FOM, ®gure of merit. CC, electron density correlation coef®cient after
SHARP phasing (SH) and after solvent ¯attening (Sol).

Data Native/KI Native/KI KCl/KI KCl/KI KI

Resolution (AÊ ) 2.5 2.5 2.0 2.0 2.0
No sites 1 5 1 5 5
Run SIRAS(1) SIRAS(2) SIRAS(3) SIRAS(4) SAD (2.0 AÊ )
PPiso(centric) 1.292 1.587 1.278 1.670 n.a.
PPiso(acentric) 1.030 1.200 1.035 1.286 n.a.
PPano 1.116 1.349 0.909 1.121 1.160
FOMacentric 0.2618 0.2981 0.2765 0.3317 0.3394
FOMcentric 0.2018 0.2631 0.2254 0.3000 0.1399
CC (SH) 0.2318 0.2701 0.2962 0.3582 0.2903
CC (Sol) 0.7055 0.6938 0.7362 0.7769 0.6825

Figure 3
(a) Packing of the molecules in the P6322 crystal unit cell. Each monomer is drawn
in a different colour and the C- and N-termini are labelled. (b) Silver-stained SDS±
PAGE results for BclA analysis. Lane 1, molecular-weight markers; lane 2, puri®ed
BclA as control; lane 3, BclA from washed crystals; lane 4, BclA after collagenase
treatment.
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typical example of the best and worst portion of this electron-density

map is shown in Fig. 1(b) and the same sections of the ®nal re®ned

electron density are shown in Fig. 1(c).

3.3. Crystal symmetry and missing density

Three molecules related by the crystallographic sixfold screw axis

form a tight trimer with N- and C-termini coming together around the

symmetry axis (Fig. 3a). The electron density accounts for only two-

thirds of the sequence, with none visible for the collagen-like

N-terminal 80 residues. The integrity of the protein was therefore

ascertained using mass spectrometry on protein recovered from

washed and dissolved crystals. A molecular weight of 21 270.8 Da was

determined, which is compatible with the theoretical value of

21 258 Da after cleavage of the initial methionine (error 0.1±0.05%).

The existence of a trimer in solution was con®rmed by gel-®ltration

chromatography performed on a Superdex 75 column in 50 mM Tris±

HCl, 100 mM NaCl buffer. The protein eluted as a single symmetrical

peak with an apparent molecular weight of 70 kDa, which is consis-

tent with a trimer.

The triple-helical collagen structure is very resistant to digestion by

all proteases except collagenase. We therefore treated BclA and

control proteins (BSA and lysozyme) with various amounts of

Clostridium histolyticum collagenase, a protease speci®c for struc-

tured collagen, where it cleaves between the X and the Gly residues

in the X-Gly-Pro-Y sequence. The digested BclA and the control

proteins were then assessed by SDS±PAGE analysis. Whereas the

untreated BclA migrated as a 29 kDa protein, BclA subjected to

collagenase was present as a 14 kDa species. This molecular weight is

in agreement with the digestion of the collagen-like amino-terminal

domain of the protein, leaving the C-terminal domain (141 amino

acids) intact. BSA and lysozyme were not degraded at all by the

collagenase treatment (Fig. 3b). A time course of collagenase activity

was then performed. The 14 kDa band was resistant to incubation

with 0.01 mg collagenase for up to 60 min (data not shown). These

data suggest that the N-terminal domain of recombinant BclA can

adopt a collagen-like structure that is readily degraded by collage-

nase, whereas the C-terminal region is resistant.

We were initially hoping to observe a collagen-type triple helix at

the N-terminus of the visible globular C-terminal trimer assembly.

The symmetry of a collagen-type triple helix is, however, incompa-

tible with the observed hexagonal crystal symmetry. We therefore

examined the data closely to verify whether the true space group was

in fact of a lower symmetry and the molecules of the trimer were

related by non-crystallographic symmetry only. Table 4 summarizes

the data statistics when different possible space groups are consid-

ered. It is clear that the highest hexagonal symmetry space group is

the correct one. Since the protein is intact within the crystal, we

conclude that despite the excellent overall order of these crystals, one

third of the polypeptide chain is disordered.

A similar situation was encountered in the crystal structure of

collagen VIII, where the globular C-terminal part is well ordered but

the N-terminal 42 residues that should form a triple helix are totally

disordered (Kvansakul et al., 2003). To date, only one crystal structure

of a collagen triple helix linked to a noncollagenous C-terminal

domain exists (Stetefeld et al., 2002), showing for the ®rst time the

transition from a strictly threefold-related globular part to the helical

symmetry of the collagen triple helix. Notably, the crystal symmetry

was C2, with non-crystallographic threefold symmetry relating

monomers within the globular part. Even in this structure the triple-

helix part of the structure has much higher B values than the globular

region, with the two Gly-Pro-Pro triplets most distant from it

becoming quite disordered.

4. Conclusions

The recent developments in automatic structure-determination soft-

ware have succeeded in providing some very powerful tools for the

protein crystallographer. In this report, we show that in combination

with a modern powerful laboratory X-ray source and even moder-

ately complete data to moderate resolution, such software can

produce extremely satisfactory results. We further show that in the

context of a laboratory X-ray source equipped with a copper target,

the use of a high concentration of iodide salts can provide an

excellent heavy-atom derivative. Indeed, soaking in a high-salt

solution can improve the quality of the data by improving the crystal

and crystal-freezing properties.
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Table 3
Iodide sites located by SHARP and SHELXD (fractional coordinates).

Atom No. x y z Occupancy B

SHARP
1 ÿ0.438 ÿ0.230 ÿ0.218 0.92 18.18
2 0.628 0.358 0.251 0.20 20.87
3 0.446 0.362 0.192 0.31 25.24
4 0.358 0.470 0.013 0.39 35.08
5 0.281 0.463 0.005 0.70 53.79

SHELXD
1 ÿ0.439 ÿ0.231 ÿ0.218 1.00 20.00
2 0.357 0.464 0.011 0.33 20.00
3 0.628 0.357 0.250 0.15 20.00
4 0.449 0.365 0.193 0.31 20.00
5 0.277 0.466 0.004 0.24 20.00

Table 4
Check for true crystal symmetry using the 2 AÊ KCl data (results from SCALA from
the CCP4 package; Collaborative Computational Project, Number 4, 1994).

Space group Rsym² Rmeas³ No. uniques

P1 0.060 0.084 65541
C2 0.056 0.076 53422
C2221 0.064 0.080 34873
P6322 0.076 0.083 14608

² Rsym =
P

h

P
i jI�h�i ÿ hI�h�ij=Ph

P
i I�h�. ³ Rmeas, redundancy-independent (multiplicity-

weighted) Rsym.
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