969 research outputs found

    Back-in-time dynamics of the cluster IE 0657-56 (the Bullet System)

    Full text link
    We present a simplified dynamical model of the ``Bullet'' system of two colliding clusters. The model constrains the masses of the system by requiring that the orbits of the main and sub components satisfy the cosmological initial conditions of vanishing physical separation a Hubble time ago. This is also known as the timing argument. The model considers a system embedded in an over-dense region. We argue that a relative speed of 4500km/s4500 \rm km/s between the two components is consistent with cosmological conditions if the system is of a total mass of 2.8×1015h1M2.8\times 10^{15}h^{-1} M_\odot is embedded in a region of a (mild) over-density of 10 times the cosmological background density. Combining this with the lensing measurements of the projected mass, the model yields a ratio of 3:1 for the mass of the main relative to that of the subcomponent. The effect of the background weakens as the relative speed between the two components is decreased. For relative speeds lower than 3700km/s\sim 3700\rm km/s, the timing argument yields masses which are too low to be consistent with lensing.Comment: 5 pages, 3 figures, submitted to MNRA

    Resolving Subhaloes' Lives with the Hierarchical Bound-Tracing Algorithm

    Full text link
    We develop a new code, the Hierarchical Bound-Tracing (HBT for short) code, to find and trace dark matter subhaloes in simulations based on the merger hierarchy of dark matter haloes. Application of this code to a recent benchmark test of finding subhaloes demonstrates that HBT stands as one of the best codes to trace the evolutionary history of subhaloes. The success of the code lies in its careful treatment of the complex physical processes associated with the evolution of subhaloes and in its robust unbinding algorithm with an adaptive source subhalo management. We keep a full record of the merger hierarchy of haloes and subhaloes, and allow growth of satellite subhaloes through accretion from its "satellite-of-satellites", hence allowing mergers among satellites. Local accretion of background mass is omitted, while rebinding of stripped mass is allowed. The justification of these treatments is provided by case studies of the lives of individual subhaloes and by the success in finding the complete subhalo catalogue. We compare our result to other popular subhalo finders and show that HBT is able to well resolve subhaloes in high density environment and keep strict physical track of subhaloes' merger history. This code is fully parallelized and freely available upon request to the authors.Comment: 15 pages; accepted for publication by MNRA

    The importance of the merging activity for the kinetic polarization of the Sunyaev-Zel'dovich signal from galaxy clusters

    Full text link
    The polarization sensitivity of the upcoming millimetric observatories will open new possibilities for studying the properties of galaxy clusters and for using them as powerful cosmological probes. For this reason it is necessary to investigate in detail the characteristics of the polarization signals produced by their highly ionized intra-cluster medium (ICM). This work is focussed on the polarization effect induced by the ICM bulk motions, the so-called kpSZ signal, which has an amplitude proportional to the optical depth and to the square of the tangential velocity. In particular we study how this polarization signal is affected by the internal dynamics of galaxy clusters and what is its dependence on the physical modelling adopted to describe the baryonic component. This is done by producing realistic kpSZ maps starting from the outputs of two different sets of high-resolution hydrodynamical N-body simulations. The first set (17 objects) follows only non-radiative hydrodynamics, while for each of 9 objects of the second set we implement four different kinds of physical processes. Our results shows that the kpSZ signal turns out to be a very sensitive probe of the dynamical status of galaxy clusters. We find that major merger events can amplify the signal up to one order of magnitude with respect to relaxed clusters, reaching amplitude up to about 100 nuK. This result implies that the internal ICM dynamics must be taken into account when evaluating this signal because simplicistic models, based on spherical rigid bodies, may provide wrong estimates. Finally we find that the dependence on the physical modelling of the baryonic component is relevant only in the very inner regions of clusters.Comment: 13 pages, 7 figures, submitted to A&

    Tracing early structure formation with massive starburst galaxies and their implications for reionization

    Full text link
    Cosmological hydrodynamic simulations have significantly improved over the past several years, and we have already shown that the observed properties of Lyman-break galaxies (LBGs) at z=3 can be explained well by the massive galaxies in the simulations. Here we extend our study to z=6 and show that we obtain good agreement for the LBGs at the bright-end of the luminosity function (LF). Our simulations also suggest that the cosmic star formation rate density has a peak at z= 5-6, and that the current LBG surveys at z=6 are missing a significant number of faint galaxies that are dimmer than the current magnitude limit. Together, our results suggest that the universe could be reionized at z=6 by the Pop II stars in ordinary galaxies. We also estimate the LF of Lyman-alpha emitters (LAEs) at z=6 by relating the star formation rate in the simulation to the Ly-alpha luminosity. We find that the simulated LAE LFs agree with the observed data provided that the net escape fraction of Ly-alpha photon is f_{Ly-alpha} <= 0.1. We investigate two possible scenarios for this effect: (1) all sources in the simulation are uniformly dimmer by a factor of 10 through attenuation, and (2) one out of ten LAEs randomly lights up at a given moment. We show that the correlation strength of the LAE spatial distribution can possibly distinguish the two scenarios.Comment: 9 pages, 4 figures. Summary of the talk given at the "First Light & Reionization" workshop at UC Irvine, May 2005. The published article is available from http://dx.doi.org/10.1016/j.newar.2005.11.00

    Detecting neutral hydrogen in emission at redshift z ~ 1

    Full text link
    We use a large N-body simulation to examine the detectability of HI in emission at redshift z ~ 1, and the constraints imposed by current observations on the neutral hydrogen mass function of galaxies at this epoch. We consider three different models for populating dark matter halos with HI, designed to encompass uncertainties at this redshift. These models are consistent with recent observations of the detection of HI in emission at z ~ 0.8. Whilst detection of 21 cm emission from individual halos requires extremely long integrations with existing radio interferometers, such as the Giant Meter Radio Telescope (GMRT), we show that the stacked 21 cm signal from a large number of halos can be easily detected. However, the stacking procedure requires accurate redshifts of galaxies. We show that radio observations of the field of the DEEP2 spectroscopic galaxy redshift survey should allow detection of the HI mass function at the 5-12 sigma level in the mass range 10^(11.4) M_sun/h < M_halo < 10^(12.5)M_sun/h, with a moderate amount of observation time. Assuming a larger noise level that corresponds to an upper bound for the expected noise for the GMRT, the detection significance for the HI mass function is still at the 1.7-3 sigma level. We find that optically undetected satellite galaxies enhance the HI emission profile of the parent halo, leading to broader wings as well as a higher peak signal in the stacked profile of a large number of halos. We show that it is in principle possible to discern the contribution of undetected satellites to the total HI signal, even though cosmic variance limitation make this challenging for some of our models.Comment: 14 pages, 9 figures, Submitted To MNRA

    Hydrodynamical Simulations of the IGM at High Mach Numbers

    Get PDF
    We present a new approach to doing Eulerian computational fluid dynamics that is designed to work at high Mach numbers encountered in hydrodynamical simulations of the IGM. In conventional Eulerian CFD, the thermal energy is poorly tracked in supersonic bulk flows where local fluid variables cannot be accurately separated from the much larger bulk flow components. We described a method in which local fluid quantities can be directly tracked and the Eulerian fluid equations solved in a local frame moving with the flow. The new algorithm has been used to run large hydrodynamical simulations on a 1024^3 grid to study the kinetic SZ effect. The KSZ power spectrum is broadly peaked at l~10^4 with temperature fluctuations on micro Kelvin levels.Comment: 6 pages, to appear in the Proc. from the IGM/Galaxy Connection conferenc

    Magnetic field structure due to the global velocity field in spiral galaxies

    Full text link
    We present a set of global, self-consistent N-body/SPH simulations of the dynamic evolution of galactic discs with gas and including magnetic fields. We have implemented a description to follow the evolution of magnetic fields with the ideal induction equation in the SPH part of the Vine code. Results from a direct implementation of the field equations are compared to a representation by Euler potentials, which pose a div(B)-free description, an constraint not fulfilled for the direct implementation. All simulations are compared to an implementation of magnetic fields in the Gadget code which includes also cleaning methods for div(B). Starting with a homogeneous seed field we find that by differential rotation and spiral structure formation of the disc the field is amplified by one order of magnitude within five rotation periods of the disc. The amplification is stronger for higher numerical resolution. Moreover, we find a tight connection of the magnetic field structure to the density pattern of the galaxy in our simulations, with the magnetic field lines being aligned with the developing spiral pattern of the gas. Our simulations clearly show the importance of non-axisymmetry for the evolution of the magnetic field.Comment: 17 pages, 18 figure
    corecore