256 research outputs found

    Topological data analysis and geometry in quantum field dynamics

    Get PDF
    Many non-perturbative phenomena in quantum field theories are driven or accompanied by non-local excitations, whose dynamical effects can be intricate but difficult to study. Amongst others, this includes diverse phases of matter, anomalous chiral behavior, and non-equilibrium phenomena such as non-thermal fixed points and thermalization. Topological data analysis can provide non-local order parameters sensitive to numerous such collective effects, giving access to the topology of a hierarchy of complexes constructed from given data. This dissertation contributes to the study of topological data analysis and geometry in quantum field dynamics. A first part is devoted to far-from-equilibrium time evolutions and the thermalization of quantum many-body systems. We discuss the observation of dynamical condensation and thermalization of an easy-plane ferromagnet in a spinor Bose gas, which goes along with the build-up of long-range order and superfluidity. In real-time simulations of an over-occupied gluonic plasma we show that observables based on persistent homology provide versatile probes for universal dynamics off equilibrium. Related mathematical effects such as a packing relation between the occurring persistent homology scaling exponents are proven in a probabilistic setting. In a second part, non-Abelian features of gauge theories are studied via topological data analysis and geometry. The structure of confining and deconfining phases in non-Abelian lattice gauge theory is investigated using persistent homology, which allows for a comprehensive picture of confinement. More fundamentally, four-dimensional space-time geometries are considered within real projective geometry, to which canonical quantum field theory constructions can be extended. This leads to a derivation of much of the particle content of the Standard Model. The works discussed in this dissertation provide a step towards a geometric understanding of non-perturbative phenomena in quantum field theories, and showcase the promising versatility of topological data analysis for statistical and quantum physics studies

    Datathons and Software to Promote Reproducible Research

    Get PDF
    Background: Datathons facilitate collaboration between clinicians, statisticians, and data scientists in order to answer important clinical questions. Previous datathons have resulted in numerous publications of interest to the critical care community and serve as a viable model for interdisciplinary collaboration. Objective: We report on an open-source software called Chatto that was created by members of our group, in the context of the second international Critical Care Datathon, held in September 2015. Methods: Datathon participants formed teams to discuss potential research questions and the methods required to address them. They were provided with the Chatto suite of tools to facilitate their teamwork. Each multidisciplinary team spent the next 2 days with clinicians working alongside data scientists to write code, extract and analyze data, and reformulate their queries in real time as needed. All projects were then presented on the last day of the datathon to a panel of judges that consisted of clinicians and scientists. Results: Use of Chatto was particularly effective in the datathon setting, enabling teams to reduce the time spent configuring their research environments to just a few minutes—a process that would normally take hours to days. Chatto continued to serve as a useful research tool after the conclusion of the datathon. Conclusions: This suite of tools fulfills two purposes: (1) facilitation of interdisciplinary teamwork through archiving and version control of datasets, analytical code, and team discussions, and (2) advancement of research reproducibility by functioning postpublication as an online environment in which independent investigators can rerun or modify analyses with relative ease. With the introduction of Chatto, we hope to solve a variety of challenges presented by collaborative data mining projects while improving research reproducibility

    Physics Potential of a Few Kiloton Scale Neutrino Detector at a Deep Underground Lab in Korea

    Full text link
    The demand for underground labs for neutrino and rare event search experiments has been increasing over the last few decades. Yemilab, constructed in October 2022, is the first deep (\sim1~km) underground lab dedicated to science in Korea, where a large cylindrical cavern (D: 20~m, H: 20~m) was excavated in addition to the main caverns and halls. The large cavern could be utilized for a low background neutrino experiment by a liquid scintillator-based detector (LSC) where a 2.26 kiloton LS target would be filled. It's timely to have such a large but ultra-pure LS detector after the shutdown of the Borexino experiment so that solar neutrinos can be measured much more precisely. Interesting BSM physics searches can be also pursued with this detector when it's combined with an electron linac, a proton cyclotron (IsoDAR source), or a radioactive source. This article discusses the concept of a candidate detector and the physics potential of a large liquid scintillator detector.Comment: 63 pages, 36 figures, 8 table

    Sirt3, Mitochondrial ROS, Ageing, and Carcinogenesis

    Get PDF
    One fundamental observation in cancer etiology is that the rate of malignancies in any mammalian population increases exponentially as a function of age, suggesting a mechanistic link between the cellular processes governing longevity and carcinogenesis. In addition, it is well established that aberrations in mitochondrial metabolism, as measured by increased reactive oxygen species (ROS), are observed in both aging and cancer. In this regard, genes that impact upon longevity have recently been characterized in S. cerevisiae and C. elegans, and the human homologs include the Sirtuin family of protein deacetylases. Interestingly, three of the seven sirtuin proteins are localized into the mitochondria suggesting a connection between the mitochondrial sirtuins, the free radical theory of aging, and carcinogenesis. Based on these results it has been hypothesized that Sirt3 functions as a mitochondrial fidelity protein whose function governs both aging and carcinogenesis by modulating ROS metabolism. Sirt3 has also now been identified as a genomically expressed, mitochondrial localized tumor suppressor and this review will outline potential relationships between mitochondrial ROS/superoxide levels, aging, and cell phenotypes permissive for estrogen and progesterone receptor positive breast carcinogenesis

    Postoperative Adverse Outcomes in Intellectually Disabled Surgical Patients: A Nationwide Population-Based Study

    Get PDF
    Intellectually disabled patients have various comorbidities, but their risks of adverse surgical outcomes have not been examined. This study assesses pre-existing comorbidities, adjusted risks of postoperative major morbidities and mortality in intellectually disabled surgical patients.A nationwide population-based study was conducted in patients who underwent inpatient major surgery in Taiwan between 2004 and 2007. Four controls for each patient were randomly selected from the National Health Insurance Research Database. Preoperative major comorbidities, postoperative major complications and 30-day in-hospital mortality were compared between patients with and without intellectual disability. Use of medical services also was analyzed. Adjusted odds ratios using multivariate logistic regression analyses with 95% confidence intervals were applied to verify intellectual disability's impact.Controls were compared with 3983 surgical patients with intellectual disability. Risks for postoperative major complications were increased in patients with intellectual disability, including acute renal failure (odds ratio 3.81, 95% confidence interval 2.28 to 6.37), pneumonia (odds ratio 2.01, 1.61 to 2.49), postoperative bleeding (odds ratio 1.35, 1.09 to 1.68) and septicemia (odds ratio 2.43, 1.85 to 3.21) without significant differences in overall mortality. Disability severity was positively correlated with postoperative septicemia risk. Medical service use was also significantly higher in surgical patients with intellectual disability.Intellectual disability significantly increases the risk of overall major complications after major surgery. Our findings show a need for integrated and revised protocols for postoperative management to improve care for intellectually disabled surgical patients

    A systematic enhancer screen using lentivector transgenesis identifies conserved and non-conserved functional elements at the olig1 and olig2 locus

    Get PDF
    Finding sequences that control expression of genes is central to understanding genome function. Previous studies have used evolutionary conservation as an indicator of regulatory potential. Here, we present a method for the unbiased in vivo screen of putative enhancers in large DNA regions, using the mouse as a model. We cloned a library of 142 overlapping fragments from a 200 kb-long murine BAC in a lentiviral vector expressing LacZ from a minimal promoter, and used the resulting vectors to infect fertilized murine oocytes. LacZ staining of E11 embryos obtained by first using the vectors in pools and then testing individual candidates led to the identification of 3 enhancers, only one of which shows significant evolutionary conservation. In situ hybridization and 3C/4C experiments suggest that this enhancer, which is active in the neural tube and posterior diencephalon, influences the expression of the Olig1 and/or Olig2 genes. This work provides a new approach for the large-scale in vivo screening of transcriptional regulatory sequences, and further demonstrates that evolutionary conservation alone seems too limiting a criterion for the identification of enhancers

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    The stranding anomaly as population indicator: the case of Harbour Porpoise <i>Phocoena phocoena</i> in North-Western Europe

    Get PDF
    Ecological indicators for monitoring strategies are expected to combine three major characteristics: ecological significance, statistical credibility, and cost-effectiveness. Strategies based on stranding networks rank highly in cost-effectiveness, but their ecological significance and statistical credibility are disputed. Our present goal is to improve the value of stranding data as population indicator as part of monitoring strategies by constructing the spatial and temporal null hypothesis for strandings. The null hypothesis is defined as: small cetacean distribution and mortality are uniform in space and constant in time. We used a drift model to map stranding probabilities and predict stranding patterns of cetacean carcasses under H-0 across the North Sea, the Channel and the Bay of Biscay, for the period 1990-2009. As the most common cetacean occurring in this area, we chose the harbour porpoise <i>Phocoena phocoena</i> for our modelling. The difference between these strandings expected under H-0 and observed strandings is defined as the stranding anomaly. It constituted the stranding data series corrected for drift conditions. Seasonal decomposition of stranding anomaly suggested that drift conditions did not explain observed seasonal variations of porpoise strandings. Long-term stranding anomalies increased first in the southern North Sea, the Channel and Bay of Biscay coasts, and finally the eastern North Sea. The hypothesis of changes in porpoise distribution was consistent with local visual surveys, mostly SCANS surveys (1994 and 2005). This new indicator could be applied to cetacean populations across the world and more widely to marine megafauna

    Lineage-specific dynamic and pre-established enhancer–promoter contacts cooperate in terminal differentiation

    Get PDF
    Chromosome conformation is an important feature of metazoan gene regulation; however, enhancer–promoter contact remodeling during cellular differentiation remains poorly understood. To address this, genome-wide promoter capture Hi-C (CHi-C) was performed during epidermal differentiation. Two classes of enhancer–promoter contacts associated with differentiation-induced genes were identified. The first class ('gained') increased in contact strength during differentiation in concert with enhancer acquisition of the H3K27ac activation mark. The second class ('stable') were pre-established in undifferentiated cells, with enhancers constitutively marked by H3K27ac. The stable class was associated with the canonical conformation regulator cohesin, whereas the gained class was not, implying distinct mechanisms of contact formation and regulation. Analysis of stable enhancers identified a new, essential role for a constitutively expressed, lineage-restricted ETS-family transcription factor, EHF, in epidermal differentiation. Furthermore, neither class of contacts was observed in pluripotent cells, suggesting that lineage-specific chromatin structure is established in tissue progenitor cells and is further remodeled in terminal differentiation
    corecore