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Abstract

Chromosome conformation is an important feature of metazoan gene regulation1,2; however, 

enhancer–promoter contact remodeling during cellular differentiation remains poorly understood3. 

To address this, genome-wide promoter capture Hi-C (CHi-C)1,4 was performed during epidermal 

differentiation5. Two classes of enhancer–promoter contacts associated with differentiation-

induced genes were identified. The first class (‘gained’) increased in contact strength during 

differentiation in concert with enhancer acquisition of the H3K27ac activation mark. The second 

class (‘stable’) were pre-established in undifferentiated cells, with enhancers constitutively marked 

by H3K27ac. The stable class was associated with the canonical conformation regulator cohesin, 
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whereas the gained class was not, implying distinct mechanisms of contact formation and 

regulation. Analysis of stable enhancers identified a new, essential role for a constitutively 

expressed, lineage-restricted ETS-family transcription factor, EHF, in epidermal differentiation. 

Furthermore, neither class of contacts was observed in pluripotent cells, suggesting that lineage-

specific chromatin structure is established in tissue progenitor cells and is further remodeled in 

terminal differentiation.

Chromatin architecture dynamics in the terminal differentiation of somatic tissues are not 

well understood6–10. Hi-C was therefore applied to progenitor and differentiating primary 

human epidermal keratinocytes, identifying interaction domains separated by boundaries 

exhibiting stable positions from undifferentiated progenitor-containing cell populations (day 

0) to early (day 3) and late (day 6) calcium-induced differentiation in vitro (Fig. 1a). A 

global set of contacts was defined that are anchored at the boundaries of previously defined 

contact domains11, and Hi-C read counts were then compared for these contacts during 

different stages of differentiation (Fig. 1b and Supplementary Table 1). Domain-boundary 

contacts were stable during differentiation (Fig. 1b and Supplementary Fig. 1a). RNA-seq 

performed across the differentiation time course (Supplementary Table 2) demonstrated that 

>95% of induced and repressed genes resided in domains with stable boundaries 

(Supplementary Fig. 1b), suggesting that regulatory dynamics occur via intradomain 

contacts.

To explore this possibility, genome-wide promoter CHi-C was performed during 

differentiation. Histone H3 lysine 27 acetylation (H3K27ac) ChIP–seq data provided distal 

H3K27ac peaks used to identify putative enhancers in contact with promoters12,13. Distal 

H3K27ac peaks drove enhancer reporter activity and exhibited expected patterns for other 

histone marks relative to promoters (Supplementary Fig. 1c,d). CHi-C identified 207,663 

enhancer–promoter contacts and 89,752 promoter–promoter contacts throughout 

differentiation. Both classes of contacts were largely restricted to single domains (Fig. 1c 

and Supplementary Fig. 1e). Notably, 3,575 enhancer–promoter contacts had increased CHi-

C signal as differentiation progressed, with 1,975 exhibiting a >2-fold change (Fig. 1d and 

Supplementary Table 3). A connection between gained contacts and induction of 

differentiation-related genes was exemplified by enhancer–promoter interactions involving 

the key differentiation-associated genes GRHL1 and KRT1 (refs. 14,15) (Fig. 1e,f and 

Supplementary Fig. 2a,b).

3,207 enhancer–promoter contacts with decreased signal in differentiation were also 

observed, of which 1,481 exhibited a >2-fold change (Supplementary Fig. 2c and 

Supplementary Table 3). 735 genes induced or repressed in differentiation were engaged in a 

dynamic contact, consistent with contact network rewiring within domains during 

differentiation. In contrast to contacts at domain boundaries, promoter-associated contacts 

with increased strength exhibited a global bias for association with the promoters of 

differentiation-induced genes, and a similar bias was observed for contacts with reduced 

signal and the promoters of repressed genes (Supplementary Fig. 2d). Gene ontology (GO) 

term analysis of induced genes associated with gained contacts showed enrichment for 

epidermal differentiation terms, whereas repressed genes associated with lost contacts were 
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enriched for GO terms related to the progenitor state, such as proliferation (Supplementary 

Fig. 2e).

In addition to dynamic enhancer–promoter contacts, the promoters of differentiation-induced 

genes also engaged in stable, pre-established enhancer–promoter contacts. 65% (502 genes) 

were engaged exclusively in stable enhancer–promoter contacts, as compared to 6% (43 

genes) that were engaged exclusively in gained contacts (Supplementary Fig. 3a,b) and 29% 

(222 genes) that were engaged in both gained and stable contacts. The former group echoes 

recent findings in Drosophila melanogaster embryogenesis, where the vast majority of 

enhancer–promoter contacts are pre-established before gene induction8, and with findings at 

Hox loci in mouse development, where tissue-invariant structural contacts form a universal 

architecture that guides tissue-specific enhancer–promoter interactions16,17. Differentiation 

genes within each category of enhancer–promoter contacts had similar GO terms related to 

epidermal differentiation (Supplementary Fig. 3c). The GO term enrichment for the gained-

only set was limited owing to its small size; however, these genes were induced at similar 

levels to the other two sets and included genes of the known differentiation-associated 

kallikrein, late cornified envelope, and MAF families (Supplementary Fig. 3d and 

Supplementary Table 4). Interestingly, genes involved in both gained and stable contacts (GS 

genes) exhibited more lineage-specific expression than stable-contact-only genes 

(Supplementary Fig. 3e).

The relationship between enhancer chromatin state, enhancer–promoter contacts, and gene 

expression was next examined. Enhancers that were dynamically marked (gained or lost) for 

H3K27ac during differentiation were first identified (Supplementary Table 5). Gene 

induction was highly correlated with the number of H3K27ac-gained enhancers in contact 

with genes; similarly, gene repression was correlated with the number of H3K27ac-lost 

enhancers in contact with genes in progenitors (Fig. 2a). This result is consistent with 

observations from the hair follicle, within which dramatic H3K27ac dynamics accompany 

stem cell differentiation18. Interestingly, distal regions that gained contacts with repressed 

genes were enriched for a bivalent enhancer state as determined by chromHMM in 

progenitor cells, suggesting a negative regulatory role (Supplementary Fig. 4a). Overall, 

these results support a model in which multiple classes of enhancers with distinct H3K27ac 

dynamics interact with a gene, not only to provide regulatory robustness19 but also to 

increase the magnitude of gene induction.

An example of such a mixed-class contact landscape was found at the PRDM1 gene, which 

contacts both gained and stable H3K27ac peaks (Fig. 2b and Supplementary Fig. 4b). 

Extending this analysis to all 3,043 enhancers in contact with differentiation-induced genes, 

827 significantly gained H3K27ac during differentiation, whereas 2,216 showed stable 

levels of H3K27ac (Fig. 2c). Promoters contacting differentiation-related genes showed a 

similar pattern (Supplementary Fig. 4c). Analysis of pluripotent cells and distant somatic 

tissues showed that stable enhancers and, to a greater degree, H3K27ac-gained enhancers 

were specifically marked by H3K27ac in keratinocytes (Supplementary Fig. 5a–d). Analysis 

of promoter CHi-C data from human embryonic stem cells (hESCs) showed that both gained 

and pre-established enhancer–promoter contacts associated with differentiation genes 

showed significant reduction in signal in hESCs relative to kerationcytes, unlike the tissue-
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invariant contacts described in the mouse Hox loci16,17 (Supplementary Fig. 5e–g). 

Moreover, clear hESC-specific contact signal was detected at the SOX21 gene that has 

hESC-specific expression (Supplementary Fig. 5h). These results suggest that a set of 

somatic enhancer–promoter contacts is established at a developmental stage after 

pluripotency but before induction of terminal differentiation genes.

The relationship between enhancer or promoter chromatin state activation, as measured by 

H3K27ac, and contact dynamics was next examined. Notably, gain of H3K27ac at an 

enhancer or promoter during differentiation was associated with significant increases in 

contact strength (Fig. 2d and Supplementary Fig. 6a). In contrast, constitutively H3K27ac-

marked enhancers and promoters showed generally stable contact strength.

The conformation-associated factors CTCF and cohesin influence diverse classes of contacts 

in many settings11,7,20. To understand the potential roles of these factors in the regulatory 

landscape of epidermal differentiation, their genomic distribution was examined. Analysis of 

CTCF ChIP–seq peaks found widespread colocalization of CTCF and the cohesin subunit 

SMC1A (Fig. 2e, bottom). These sites were enriched at domain boundaries, as expected 

(Supplementary Fig. 6b)2,21. Cohesin, but not CTCF, was associated with constitutively 

H3K27ac-marked enhancers, as has been observed in other systems7,22 (Fig. 2e). 

Unexpectedly, minimal cohesin binding occurred at enhancers that gained H3K27ac during 

differentiation (Fig. 2e and Supplementary Fig. 6c). The absence of cohesin was exemplified 

at the HOPX locus, which exhibited dramatically increased contacts between the HOPX 
promoter and distal enhancers that gained H3K27ac during differentiation (Fig. 2f and 

Supplementary Fig. 6d). Few of the 77,155 enhancer and promoter regions exhibited 

significant cohesin dynamics relative to day 0 (3 and 4 regions gained and 12 and 1 regions 

lost on days 3 and 6, respectively, at false discovery rate (FDR) < 0.1, no minimum fold 

change; Supplementary Fig. 6e,f). Therefore, progenitor-established enhancer–promoter 

contacts are associated with premarked H3K27ac and constitutive cohesin binding at 

enhancers, whereas enhancer–promoter contacts acquired in differentiation are associated 

with enhancers that gain H3K27ac and lack cohesin.

Given the absence of cohesin at H3K27ac-gained enhancers, these regions were analyzed for 

transcription factor motifs corresponding to factors potentially regulating contacts and 

H3K27ac dynamics. C/EBP- and KLF-family motifs were highly enriched, consistent with 

the findings that C/EBPα, C/EBPβ, and the differentiation-induced transcription factor 

KLF4 are essential for epidermal differentiation23–25 (Fig. 3a). KLF4 binding was enriched 

at enhancers that acquired H3K27ac and depleted at enhancers that lost H3K27ac during 

differentiation (Fig. 3b). Moreover, ZNF750—another essential, differentiation-specific 

transcription factor that physically interacts with KLF4 to drive differentiation24,26—

colocalized with KLF4 at H3K27ac-gained enhancers (Fig. 3c). KLF4- and ZNF750-bound 

enhancers also frequently overlapped super-enhancers (Supplementary Fig. 7a).

These findings raised the possibility that KLF4 and ZNF750 contribute to both enhancer 

activation and enhancer–promoter contact formation. To address this possibility, H3K27ac 

ChIP–seq was performed in differentiating cells treated with small interfering RNAs 

(siRNAs) targeting either KLF4 or ZNF70 (Supplementary Fig. 7b). Depletion of either 
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factor impaired acquisition of H3K27ac at regions bound by these factors that gained 

H3K27ac in differentiation (Fig. 3d,e), confirming that both are required for enhancer 

commissioning. Comparison of genome-wide H3K27ac signal in transcription factor–

depleted cells, normally differentiating cells, and cells of other lineages indicated that 

transcription factor depletion altered epidermal differentiation but did not alter epidermal 

identity (Supplementary Fig. 7c).

To assess whether KLF4 and ZNF750 also influence enhancer–promoter contacts, contact 

strength in transcription factor–depleted cells was measured by targeted chromosome 

conformation capture with unique molecular identifiers (UMI-4C)27. Promoter-centric 

contact profiles for HOPX, DSC2, and PRDM1, three differentiation-related genes regulated 

by KLF4 and ZNF750 (Supplementary Fig. 7d), were chosen for analysis. Depleting either 

KLF4 or ZNF750 decreased the strength of differentiation-specific contacts between 

H3K27ac-gained enhancers bound by these factors and target promoters, whereas other 

enhancers retained contact (Fig. 3f,g and Supplementary Fig. 7e). However, the binding of 

KLF4 and ZNF750 to many other regions suggests that these factors do not specify contact 

and chromatin state dynamics at all enhancers with which they associate. Indeed, a dynamic 

contact between the KLF4- and ZNF750-bound promoters of DSC2 and DSC3 was not 

regulated by either transcription factor. Therefore, the differentiation-induced transcription 

factors KLF4 and ZNF750 are required for both acquisition of H3K27ac and establishment 

of enhancer–promoter contacts at a subset of enhancers targeting differentiation-associated 

genes.

Pre-established enhancers have been linked to gene regulation in other tissues such as the 

intestine and blood8,28,29, so enhancers in stable contact with differentiation-induced genes 

were analyzed for transcription factor motifs that might correspond to factors regulating this 

process. The most common enriched motifs corresponded to the ETS family30 (Fig. 4a and 

Supplementary Fig. 8a). The EHF ETS-family transcription factor showed the most lineage-

specific expression31 in stratified epithelia (Fig. 4b and Supplementary Fig. 8b), similar to 

the master epithelial regulator TP63 (encoding p63)32. EHF expression was largely stable 

during differentiation (Supplementary Fig. 8c–e). EHF depletion in organotypic human 

epidermal tissue, which retains the architecture and differentiation of intact epidermis33, 

impaired expression of key differentiation-related genes (Fig. 4c and Supplementary Fig. 

9a,b). RNA-seq analysis of EHF-depleted epidermal tissue demonstrated that EHF loss 

altered expression of 400 genes (Supplementary Fig. 9c and Supplementary Table 6). EHF-

dependent genes included keratin, SPRR, and LCE genes and were associated with GO 

terms that included keratinocyte differentiation and epidermis development (Fig. 4d), 

whereas EHF-repressed genes were enriched for functions associated with other lineages 

(Supplementary Fig. 9c). EHF is thus required both for induction of differentiation-related 

genes and for repression of ectopic gene expression.

Consistent with the constitutive expression of EHF, EHF binding was detected at stably 

H3K27ac-marked, ETS-motif-containing enhancers that contacted EHF-dependent 

differentiation-related genes (Supplementary Fig. 9d). EHF binding at these sites remained 

largely stable as cells transitioned from the progenitor state to differentiation. EHF ChIP–seq 

analysis in differentiating cells identified loci highly enriched for the ETS motif 

Rubin et al. Page 5

Nat Genet. Author manuscript; available in PMC 2017 December 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Supplementary Fig. 9e) and demonstrated enriched binding at constitutively H3K27ac-

marked enhancers over those that dynamically gained H3K27ac, consistent with the motif 

analysis (Fig. 4e). Additionally, these EHF-bound, H3K27ac-premarked enhancers generally 

engaged in stable contacts with differentiation-associated genes (Supplementary Fig. 9f). 

Consistent with the observation that constitutive enhancers are enriched for cohesin, EHF-

bound regions exhibited widespread co-occupancy with SMC1A (Fig. 4f).

To determine whether EHF directly maintains enhancer–promoter contacts and chromatin 

state at enhancers with which it is associated, H3K27ac ChIP–seq and UMI-4C were 

performed in EHF-depleted differentiating cells. EHF-bound enhancers in contact with the 

promoters of differentiation-induced genes maintained H3K27ac levels in the absence of 

EHF, while enhancer–promoter contacts involving EHF-bound enhancers at the EHF-

regulated DSG3 locus were also unaffected (Fig. 4g,h and Supplementary Fig. 9g,h). These 

data suggest that EHF regulates gene expression in a manner distinct from KLF4 and 

ZNF750, namely by using a chromatin state and contact scaffold maintained by other 

factors, such as DNMT3A and DNMT3B34, to prime gene induction.

Here we used chromosome conformation analysis to identify two classes of enhancer–

promoter contacts in epidermal differentiation. The first gained enhancer–promoter contact 

strength during differentiation in concert with enhancer acquisition of H3K27ac. Unlike 

previously studied enhancers, these dynamic enhancers exhibited minimal binding to 

cohesin, instead relying on differentiation-induced transcription factors, such as KLF4 and 

ZNF750, to regulate the contacts and underlying enhancer activation. The second class of 

enhancer–promoter contacts, in contrast, was pre-established in progenitor cells but not in 

embryonic stem cells and connected constitutively H3K27ac-marked enhancers with 

differentiation-induced promoters. These enhancers were constitutively bound by cohesin as 

well as stably expressed, essential transcription factors, such as EHF. These findings inform 

a model (Fig. 4i) in which two enhancer–promoter contact classes with distinct regulatory 

mechanisms cooperate to induce the expression of differentiation-related genes within stable 

domains bounded by CTCF and cohesin. More broadly, these results suggest that progenitor 

cells partially pre-establish a regulatory apparatus that is fully engaged in terminal 

differentiation.

URLs. HOMER, http://biowhat.ucsd.edu/homer/index.html; Roadmap Epigenomics Project 

online data portal, http://egg2.wustl.edu/roadmap/data/byFileType/

chromhmmSegmentations/ChmmModels/coreMarks/jointModel/final/; GWAS Catalog from 

EMBL, http://www.ebi.ac.uk/gwas/docs/file-downloads.

ONLINE METHODS

Cell culture

Primary human keratinocytes were isolated from fresh, surgically discarded neonatal 

foreskin. Keratinocytes were grown in 1:1 KCSFM and Medium 154 (Life Technologies). 

Keratinocytes were induced to differentiate by addition of 1.2 mM calcium for 3 or 6 d at 

full confluence. For regenerated organotypic epidermal tissue, 1 million siRNA-treated 
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keratinocytes were seeded onto devitalized human dermis for 4 d and then harvested for 

RNA or protein.

Hi-C library preparation

Hi-C library generation was carried out in biological duplicate samples at days 0, 3, and 6 as 

described previously with the following modifications1. After fixation in 2% formaldehyde 

for 10 min, 20 to 30 million cells were Dounce homogenized in 10 ml of ice-cold lysis 

buffer ten times on ice with a tight pestle, incubated on ice for 15 min, and then Dounce 

homogenized a further ten times. After overnight digestion with HindIII at 37 °C, DNA ends 

were labeled with biotin-14-dATP (Life Technologies) in a Klenow end-filling reaction and 

ligated in nuclei overnight. After phenol-chloroform purification, the DNA concentration 

was measured using Quant-iT PicoGreen (Life Technologies), and 40 µg of DNA was 

sheared to an average size of 400 bp, using the manufacturer’s instructions (Covaris). The 

sheared DNA was end repaired, adenine tailed, and double size selected using AMPure XP 

beads to isolate DNA ranging from 250 to 550 bp in size. Ligation fragments marked by 

biotin were immobilized using MyOne Streptavidin C1 DynaBeads (Invitrogen) and ligated 

to paired-end adaptors (Illumina). The immobilized Hi-C libraries were amplified using PE 

PCR 1.0 and PE PCR 2.0 primers (Illumina) with 6–9 PCR amplification cycles.

Biotinylated RNA bait library design

Biotinylated 120-mer RNA baits were designed to target both ends of HindIII restriction 

fragments overlapping the Ensembl promoters of protein-coding, noncoding, antisense, 

snRNA, miRNA, and snoRNA transcripts. A target sequence was valid if its GC content 

ranged between 25 and 65% and the sequence contained no more than two consecutive Ns 

and was within 330 bp of the HindIII restriction fragment terminus.

Promoter capture Hi-C

Capture Hi-C of promoters was carried out in biological duplicate samples at days 0, 3, and 

6 with SureSelect target enrichment, using the custom-designed biotinylated RNA bait 

library and custom paired-end blockers according to the manufacturer’s instructions (Agilent 

Technologies). After library enrichment, a post-capture PCR amplification step was carried 

out using PE PCR 1.0 and PE PCR 2.0 primers with 4–6 PCR amplification cycles. Hi-C 

and CHi-C libraries were sequenced on the Illumina HiSeq 2000 platform.

UMI-4C library preparation and analysis

4C libraries were generated as previously described24 with the following modifications. 

Contacts were generated in intact nuclei following the in situ Hi-C protocol11 to minimize 

spurious ligations. After ligation, nuclei were spun down and resuspended in 95 µl of PK 

Buffer (10 mM Tris pH 8.0, 100 mM NaCl, 1 mM EDTA, 0.5% SDS) and 5 µl of 20 mg/ml 

proteinase K (Thermo Fisher, AM2548). Protein was degraded at 55 °C for 45 min, and 

cross-links were reversed at 68 °C for at least 2 h. 5 µl of 5 mg/ml RNase A (Affymetrix, 

70194Z) was then added, and samples were incubated at 37 °C for 30 min. DNA was 

ethanol precipitated, and the pellet was resuspended in 200 µl of 10 mM Tris pH 8.0. DNA 

was quantified with a Nanodrop, and 5–10 µg of DNA was taken into sonication and 
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subsequent UMI-4C library construction. We generated two biological replicate UMI-4C 

libraries for each experiment and then performed two PCRs per replicate for each anchor 

locus (resulting in a total of four libraries for each locus per experiment). HiC-Pro35 was 

used to align paired-end reads, assign reads to MboI restriction fragments, filter for spurious 

contacts, and count reads supporting contact between 5-kb bins. Bins corresponding to 

anchor loci (primer-binding sites) were used to plot profiles for each sample. Profiles were 

scaled by the total read pairs associated with the anchor bin in each sample, divided by 

1,000, to account for variable read depth. Profiles were plotted in R and smoothed with the 

rollmean function of the zoo package.

Chromatin immunoprecipitation

For ChIP followed by qPCR, 2–5 million primary keratinocytes were used as starting 

material; for ChIP–seq, 10–30 million cells were used. ChIP was performed essentially as 

described24. Pulldown was performed with 10 µg of ChIP–seq-validated antibody against 

H3K27ac (Abcam, ab4729), CTCF (Millipore, 07-729), SMC1A (Bethyl, A300-055A), or 

EHF (Santa Cruz Biotechnology, sc-166653). Staph A cells were used for pulldown. DNA 

was purified using Qiagen QIAquick PCR Purification columns and subjected to qPCR 

(primer sequences in Supplementary Table 7). For qPCR, the percentage of input signal was 

calculated, and error bars represent s.e.m. calculated using GraphPad Prism. ChIP–seq 

libraries were prepared with the NEBNext ChIP–seq library prep kit (NEB) using AMPure 

beads (Agencourt) for purification.

Immunoblotting

For immunoblot analysis of EHF, total protein was extracted in RIPA buffer with Complete 

Mini, EDTA-free Protease inhibitor cocktail tablets (Roche), and 30 µg of total protein was 

resolved by 4–12% SDS–PAGE and transferred to a nitrocellulose membrane. The 

membrane was incubated in primary antibody (Santa Cruz Biotechnology, sc-166653) 

overnight at 4 °C at a concentration of 1:500 and in secondary antibody (LI-COR) for 1 h at 

room temperature. The LI-COR Odyssey Clx instrument was used for protein detection, and 

expression of actin was detected to confirm equal loading.

Immunofluorescence microscopy

7-µm sections of organotypic epidermal tissue were fixed with 4% formaldehyde for 15 min 

followed by blocking in PBS with 2.5% normal goat serum, 0.3% Triton X-100, and 2% 

BSA for 30 min. Primary antibodies against keratin-1 (Covance, PRB-149P; 1:2,000 

dilution), keratin-10 (Neomarkers, MS611P; 1:350 dilution), collagen VII (Calbiochem, 

234192; 1:200 dilution), and collagen VII (Chemicon, MAB2500; 1:200 dilution) were 

added overnight at 4 °C, and secondary antibodies were added for 1 h at room temperature. 

Quantification of immunofluorescence signal was performed with ImageJ, and Student’s t 
tests were used to compare biological samples.

qRT–PCR gene expression analysis

The RNeasy plus kit (Qiagen) was used to extract total RNA. Approximately 1 µg was used 

as input to the iSCRIPT cDNA synthesis kit (Bio-Rad). cDNA and primers were mixed with 
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Maxima SYBR Green Mastermix (Fermentas), and the Roche 480 LightCycler instrument 

was used for qPCR.

Enhancer reporter assays

Reporter constructs were generated by cloning regions of interest into the lentiviral 

pGreenFire vector (System Biosciences). Firefly luciferase activity was measured using the 

Dual-Luciferase Reporter Assay System from Promega. Luminescence was normalized to 

proviral integrants as previously described26.

siRNA-mediated knockdown

For siRNA-mediated gene transfer, 1 × 106 primary human keratinocytes were 

electroporated with 1 nmol of siRNA oligonucleotide, using the human keratinocyte 

Nucleofector kit (Lonza). Dharmacon ON-TARGET siRNA sequences were as follows: 

ZNF750 (5′-CCACCAGAGTTTCCACATA-3′), KLF4 (5′-
TGACCAGGCACTACCGTAA-3′), EHF siRNA A (5′-
GGAAGGAGGTGGTGTAATGTT-3′), and EHF siRNA B (5′-
GACGAGAACTATTTATATG-3′). EHF siRNA B was used for RNA-seq, H3K27ac ChIP–

seq, and UMI-4C experiments.

RNA-seq library preparation, data processing, and dynamic expression calls

RNA-seq libraries were prepared with TruSeq RNA Library Prep Kit v2 (Illumina). For 

quantitative comparison of transcriptional changes in differentiation, paired-end RNA-seq 

reads were obtained from biological duplicates at days 0, 3, and 6, with a read depth of 6 × 

107 read pairs per sample per time point. For RNA-seq with knockdown in organotypic 

tissue, three technical replicates were obtained for both EHF and CTR knockdown, with a 

read depth of 3 × 107 read pairs per sample. Reads were aligned to the GENCODE v19 

transcriptome in hg19 using STAR aligner version 2.4.1d with default settings. RSEM 

version 1.2.21 was then used to calculate expected read counts per gene that were input to 

edgeR version 3.4.2 for differential expression analysis. Analysis of the read count 

distribution indicated that a threshold of five reads per gene generally separated expressed 

from unexpressed genes, so all genes with fewer than five reads were excluded from edgeR 

analysis. Enriched GO terms for RNA-seq differentially expressed gene sets were identified 

using DAVID36. Signal tracks were generated using previously published data33 by first 

using BEDTools genomeCoveragebed to produce bedGraph files scaled to 1 million reads 

per data set. Then, the UCSC Genome Browser utility bedGraphToBigWig was used with 

default parameters to generate bigwig files.

Motif enrichment analysis

The HOMER tools function findMotifsGenome was used with default parameters and a 

region size of 500 bp to compare sets of genomic regions for differential motif enrichment. 

When comparing sets of H3K27ac peaks, we identified sets of narrow open chromatin sites 

within these peaks by identifying peaks of ATAC–seq summits. ATAC–seq data were 

generated in a previous study37. The results of the known motif enrichments are presented.
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Hi-C and CHi-C data processing, heat maps, interaction calls, and visualization

1.36 × 109 total Hi-C reads and 1.09 × 109 total CHi-C reads were processed using the 

HiCUP pipeline38, which aligns reads, filters artifact fragments (such as circularized reads 

and re-ligations), and removes duplicates. To quantitatively score CHi-C interaction 

strength, we used the CHiCAGO pipeline39, which normalizes reads for sequencing depth 

and fragment visibility bias and provides a statistical assessment of contact strength by 

comparing observed reads supporting a particular interaction to a global distance-dependent 

background model. Interactions between baits with FDR < 0.01 were considered to be 

promoter–promoter interactions. Interactions between baits and non-bait fragments with 

FDR < 0.01 were considered to be enhancer–promoter interactions if the non-bait fragment 

overlapped an H3K27ac peak at any day of the time course. The edgeR package40 version 

3.4.2 was used to call significantly increased or decreased interactions on the basis of read 

counts supporting interactions. A previous study described bias based on contact distance 

associated with the identification of differential interactions from Hi-C-like data41. We 

extended this insight to our analysis by splitting CHi-C contacts into two distance regimes of 

greater or less than 150 kb. Differential interaction calls from each set were thresholded by 

FDR and fold change and were combined to form the final set of dynamic promoter–

promoter or enhancer–promoter interactions. We also noticed that many CHi-C contacts 

were supported by relatively low read counts to allow for confident differential signal 

identification40. For this reason, we excluded from edgeR analysis CHi-C contacts that were 

not supported by at least 15 reads in at least one replicate. For visualization of CHi-C read 

counts associated with an individual promoter, counts corresponding to contact between 

individual HindIII fragments and the bait fragment were scaled by the total number of reads 

emanating from the bait fragment divided by 1,000. This normalization accounted for 

variable read depth and efficiency of bait capture across samples. Profiles were plotted in R 

and smoothed with the rollmean function of the zoo package. In all Genome Browser 

examples of CHi-C signal, the enhancer track corresponds to H3K27ac peaks that do not 

overlap CHi-C promoter bait HindIII fragments. For comparisons to hESCs, CHi-C data 

were acquired from the Open Science Framework (accession SDBG4; ref. 42). Global 

comparisons between keratinocytes and hESCs were performed on quantile-normalized read 

counts based on the union set of contacts called in hESCs and keratinocytes.

ChIP–seq data processing, heat map generation, and edgeR analysis

KLF4 and ZNF750 ChIP–seq data were generated in a previous study33 (GEO accession 

GSE57702). H3K27ac, CTCF, SMC1A, and EHF ChIP–seq analyses were performed in 

undifferentiated and differentiating primary human keratinocytes, with an average range of 

20–25 × 106 reads per independent ChIP–seq experiment. H3K27ac and SMC1A ChIP–seq 

analyses were performed in biological duplicates. ChIP–seq reads were mapped to the hg19 

genome with Bowtie2 using default parameters. Aligned reads were filtered for minimum 

MAPQ of 30, and duplicates were removed using SAMtools. Signal tracks were generated 

by first using the BEDTools genomeCoverageBed tool to produce bedGraph files scaled to 

10 million reads per data set. Then, the UCSC Genome Browser utility bedGraphToBigWig 

was used with default parameters to generate bigwig files. For H3K27ac, SMC1A, and 

CTCF signal tracks, we performed linear scaling to normalize for ChIP efficiency. To 

achieve this, we adjusted the genomeCoverageBed scaling factors by the median read count 
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value observed in a union set of peak calls for each ChIP target from all days. All ChIP–seq 

signal tracks are displayed with a minimum y axis of 1. Peaks were called using MACS2 

with default parameters except for KLF4 and EHF, for which the confidence threshold was 

adjusted to account for spurious peak calling identified by visual inspection. P values of 1 × 

10−8 and 1 × 10−4 were used for KLF4 and EHF peak calls, respectively. Heat maps of 

ChIP–seq signal profiles were generated with the HOMER (http://biowhat.ucsd.edu/homer/

index.html) tool annotatePeaks with the following parameters: -ghist 50, -size 10000. ChIP–

seq peaks exhibiting differential H3K27ac or SMC1A signal across the time course were 

identified using edgeR similarly to above. We noticed that two of the six SMC1A ChIP–seq 

data sets had relatively low signal-to-background ratios as determined by calculating the 

fraction of reads in peaks (FRiP)43. Two replicates with a FRiP score below 2% were 

excluded from edgeR analysis. MA plots representing SMC1A ChIP signal magnitude and 

dynamics at enhancers (Supplementary Fig. 2d,e) were generated using the smoothScatter 

function in R.

Calculation of enrichment of gene sets associated with dynamic contact sets

To determine whether sets of dynamic enhancer–promoter contacts were preferentially 

associated with dynamically expressed genes, we first identified the proportion of all 

enhancer–promoter contacts in which the contact bait region overlapped the transcription 

start site (TSS) of a gene in the gene set. We compared the overlap proportion of the 

dynamic contact sets to the total contact set and report that ratio as the overlap enrichment of 

the dynamic set. This process was carried out for contact and gene sets identified using 

edgeR as described above.

Calculation of empirical false discovery rate for dynamics of gene expression based on 
contacting enhancer status

For Figure 2a, we determined an empirical FDR to identify a gene set with a mean RNA-seq 

fold change of equal or greater magnitude than what was observed in the experiment. We 

sampled all genes 1,000 times using a number of samples equal to the size of the test set.

Gene association with dynamic and stable contacts

For Supplementary Figure 3, induced genes were associated with either gained or stable 

CHi-C contacts at the last time point of differentiation. The stable contact set was defined as 

having an edgeR FDR >0.7 for dynamic contact signal and a minimum of 15 reads for at 

least one time point. The dynamic contact set was identified by applying a threshold of FDR 

< 0.1 and a minimum of 15 reads for at least one time point, as described above. Genes were 

then classified for promoters associating with gained, stable, or both types of contact.

Roadmap Epigenomics Project chromHMM analysis

The core 15-state chromHMM model for normal human epidermal keratinocytes generated 

by the Roadmap Epigenomics Project was acquired from the online data portal at http://

egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/

coreMarks/jointModel/final/. ChromHMM v1.1 was used to assess enrichment of genomic 

regions across each state with the OverlapEnrichment function.
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Calculation of empirical false discovery rate for dynamics of contact sets

We calculated empirical FDRs through sampling for the comparisons of contact strength 

dynamics between pairs of contact sets (Fig. 2d and Supplementary Figs. 4b and 8e). In each 

case, we considered the stable contact set as a reference and used 1,000 repeated samplings 

of equal number as the test sample from that set to determine how often a distribution with a 

mean as or more divergent could be drawn.

Calculation of KLF4 ChIP–seq peak enrichment at dynamic H3K27ac regions

To determine whether KLF4 preferentially binds at dynamic H3K27ac regions, we first 

calculated the proportion of all H3K27ac peak regions that overlapped a KLF4 peak. We 

then calculated the proportion of dynamic H3K27ac regions (at various thresholds) that 

overlapped KLF4 peaks and report the ratio of proportions between the dynamic set of 

H3K27ac peaks and the total set as the enrichment.

Super-enhancer identification and enrichment analysis

Super-enhancers were identified at each time point using the ROSE (https://bitbucket.org/

young_computation/rose) tool with H3K27ac ChIP–seq peaks as input. Default stitching 

distance and a TSS exclusion distance of 2 kb were used. Enrichment of transcription 

factor–bound or dynamic contact-associated enhancers was calculated by determining the 

proportion of all enhancers or specific subsets overlapping super-enhancers. The ratio of 

these two proportions is reported as the enrichment of the enhancer subset overlap with 

super-enhancers.

Cell type specificity of ETS transcription factor family member expression

We downloaded gene-level expression read counts for all paired-end, poly(A)-selected 

RNA-seq data from the Roadmap Epigenomics Project. Expression levels were quantile 

normalized, and we calculated the Pearson correlation for all pairs of samples. The resulting 

correlation matrix was clustered using the heatmap.2 function of the gplots package in R, 

and lineage-associated clusters were manually annotated. We calculated the z score of 

expression for each gene across the collection of cell types.

Statistics

Analysis-specific statistics were applied as described in each subsection. Sets of 

significantly differential elements (genes, genomic regions, or contacts) were identified with 

edgeR. When sampling a subset of elements (genes, genomic intervals, or contacts) from a 

larger set to compare distributions, empirical FDRs were calculated by randomly sampling 

sets of equal size to the test set. The mean value of the test set was then compared to the 

collection of random samples to determine how frequently a random sample exhibited at 

least as extreme a mean value. For other comparisons of distributions, the two-sided 

Kolmogorov–Smirnov test was employed in R, and absolute P values are reported. The 

minimum P value calculated for this test in R is 2.2 × 10−16. For comparisons of 

immunofluorescence intensity from organotypic tissue, Student’s t test was used.

A Life Sciences Reporting Summary for this publication is available.
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Code availability

Custom scripts described in the Online Methods will be made available upon request.

Data availability

All sequencing data are available through the Gene Expression Omnibus (GEO) via 

accession GSE84662. Source data are provided for Figures 1–4 and Supplementary Figures 

1–8.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Remodeling of the enhancer–promoter contact landscape in terminal differentiation. (a) 

Genomic locus of keratin-family genes. From top to bottom: Hi-C interaction matrices, self-

interacting domains (green), and genes induced (red) or repressed (blue) on day 3 or day 6 of 

epidermal cell differentiation identified by RNA-seq. (b) Scatterplot of Hi-C read counts 

supporting contacts between domain boundaries. Contacts enclosing domains containing 

differentially expressed genes are highlighted. (c) Heat map of CHi-C read count profiles 

observed for bait HindIII fragments residing within a domain. Each row represents the 

contact signal from a single promoter, promoters are aligned by distance to the upstream 

domain boundary, and rows are sorted in order of domain size. (d) Heat maps of CHi-C q 
scores (determined by CHiCAGO) for 1,975 enhancer contacts gained with target promoters 

during epidermal cell differentiation. Contacts are sorted in order of enhancer–promoter 

(EP) distance. (edgeR, FDR < 0.1; fold change > 2). (e,f) Genomic loci for the GRHL1 (e) 

and KRT1 (f) genes with promoter CHi-C signal. Enhancers correspond to promoter-distal 

H3K27ac ChIP–seq peaks.
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Figure 2. 
Enhancer activation and contact dynamics are linked independently of cohesin. (a) Mean 

change in expression for genes in CHi-C contacts with enhancers displaying gained or lost 

H3K27ac status (empirical FDR, *, FDR < 0.05; **, FDR < 0.01). (b) Genomic locus of the 

PRDM1 gene, including CHi-C q score and H3K27ac ChIP–seq signal tracks. Gained 

enhancers correspond to H3K27ac peaks with significant gain in H3K27ac signal on day 3 

or day 6 versus day 0 (edgeR, FDR < 0.05; fold change > 2). (c) Heat map of the fold 

change in H3K27ac ChIP–seq read count. Regions are separated into the set with gained 

H3K27ac signal on day 6 versus day 0 (edgeR, FDR < 0.05; fold change > 2) and the set 

with premarked H3K27ac on day 6 versus day 0 (edgeR, FDR > 0.7). (d) Box-and-whisker 

plots of the difference in contact q score between day 6 and day 0. Contact sets are defined 

by H3K27ac dynamics at the promoter locus (bait HindIII fragment) or enhancer. Dashed 

lines denote day 0 for either H3K27ac signal or mRNA expression of differentiation-related 

genes; solid lines denote corresponding signals for day 6. Each box represents the median 

and interquartile range; whiskers extend to 1.5 times the interquartile range (empirical FDR, 

*, FDR < 0.01). (e) Heat maps of H3K27ac, SMC1A, and CTCF ChIP–seq signals at gained 

enhancers, stable enhancers, and CTCF peaks (stable enhancers and CTCF peaks were 

restricted to chromosome 1 to approximately match the number of gained enhancer peaks). 

(f) HOPX locus, including CHi-C q score and ChIP–seq tracks for H3K27ac, CTCF, and 

SMC1A.
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Figure 3. 
Induced transcription factors couple regulation of chromatin activation and conformation. 

(a) Enrichment of transcription factor (TF) motifs identified by HOMER in enhancers 

gained on day 6 versus enhancers lost on day 6. Motifs are ranked by −log10 (P value). (b) 

Enrichment of day 3 KLF4 ChIP–seq peaks in H3K27ac peak subsets determined by fold 

change in H3K27ac dynamics on day 3 versus day 0. (c) Heat maps of KLF4, ZNF750, and 

CTCF ChIP–seq signal on day 3 at enhancers with gained H3K27ac signal. (d) Box-and-

whisker plots representing relative H3K27ac ChIP–seq signal in control versus transcription 

factor–knockdown conditions, for two biological replicates of each knockdown. Regions 
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analyzed were H3K27ac-gained enhancers bound by KLF4. Keratinocytes were treated with 

siRNAs targeting KLF4 (KLF4i), ZNF750 (ZNF750i), or a scrambled control (CTRi) and 

placed in differentiation conditions for 3 d. Each box represents the median and interquartile 

range; whiskers extend to 1.5 times the interquartile range (empirical FDR, ***, FDR < 10 × 

10−3). (e) Representative genomic loci depicting the effect of KLF4 or ZNF750 depletion at 

enhancers. Both loci exhibit significant loss of H3K27ac upon KLF4 or ZNF750 depletion 

(edgeR, FDR < 0.05). (f) UMI-4C profile of interactions anchored by the HOPX promoter in 

control and KLF4- or ZNF750-knockdown conditions. Error bands represent s.e.m. between 

replicates. Vertical shaded boxes represent KLF4- or ZNF750-binding sites coinciding with 

gained H3K27ac. Gained H3K27ac peaks in normal differentiation that exhibit H3K27ac 

signal loss in KLF4 or ZNF750 knockdown (edgeR, FDR < 0.05) are flagged as 

transcription factor dependent. (g) As in f, with the UMI-4C profile anchored by the DSC2 
promoter.
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Figure 4. 
The transcription factor EHF associates with premarked H3K27ac elements and is essential 

for epidermal differentiation. (a) Top enriched transcription factor motifs identified by 

HOMER in premarked H3K27ac elements in contact with the promoters of differentiation-

induced genes. (b) Heat map representing z scores of transcription factor expression values 

determined by RNA-seq from the Roadmap Epigenomics Project. Each cell corresponds to 

the average expression z score across the cell type groups identified through hierarchical 

clustering of all genes. Rows are sorted by the z score in the cluster containing epidermal 

keratinocytes, and the z scores for epidermal keratinocytes are shown separately in the 

leftmost column. Cluster IDs are as follows: 1, epithelial; 2, cancer cell line; 3, simple 

epithelial; 4, extramedullary hematopoietic; 5, muscle; 6, gastrointestinal/hepatic; 7, 

immune; 8, neural; 9, mesenchymal; 10, embryonic; 11, other. (c) Immunofluorescence 

microscopy of organotypic epidermis treated with siRNAs targeting EHF (EHFi) or a 

scrambled control. The white bar highlights the height of the region marked by the 

differentiation-specific proteins KRT1 and KRT10. Scale bar, 50 µm. (d) Heat map 

representing mRNA expression of differentiation-induced genes in EHF-depleted 

organotypic epidermis relative to normal control. GO terms were derived for EHF-dependent 

genes. (e) EHF ChIP–seq metaplot signal at H3K27-premarked (n = 5,932) and H3K27ac-

gained (n = 3,233) putative enhancers. Error bands represent 98% boostrapped confidence 

intervals. (f) Heat maps of day 3 EHF, SMC1A, and CTCF ChIP–seq profiles at all EHF 
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ChIP–seq peaks. (g) Box-and-whisker plots representing relative H3K27ac ChIP–seq signal 

at day 3 of differentiation in control versus EHF-knockdown conditions. Each distribution 

represents a biological replicate. Regions analyzed are H3K27ac peaks bound by EHF and in 

contact with the promoters of differentiation-induced genes. Each box represents the median 

and interquartile range; whiskers extend to 1.5 times the interquartile range (empirical FDR, 

n.s., FDR > 0.05). (h) Representative genomic locus demonstrating the effect of EHF 

depletion at EHF-bound enhancers. (i) Working model. Induction of differentiation-related 

genes involves two types of enhancer–promoter interactions that occur within CTCF- and 

cohesin-bound domains: (i) H3K27ac premarked enhancers, bound by cohesin and by 

constitutively expressed transcription factors, such as EHF, in stable contact with 

differentiation-related genes and (ii) enhancers that bind inducible transcription factors, such 

as KLF4 and ZNF750, to gain H3K27ac marks and increase contact with differentiation-

related genes.
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