157 research outputs found

    A Comparative Plasmonic Study of Nanoporous and Evaporated Gold Films

    Get PDF
    Previously, we have reported that nanoporous gold (NPG) films prepared by a chemical dealloying method have distinctive plasmonic properties, i.e., they can simultaneously support localized and propagating surface plasmon resonance modes (l-SPR and p-SPR, respectively). In this study, the plasmonic properties of NPG are quantified through direct comparison with thermally evaporated gold (EG) films. Cyclic voltammetry and electrochemical impedance spectroscopy experiments reveal that the NPG films have 4–8.5 times more accessible surface area than EG films. Assemblies of streptavidin–latex beads generate p-SPR responses on both NPG and EG films that correlate well with the bead density obtained from scanning electron microscopy (SEM) images. A layer-by-layer assembly experiment on NPG involving biotinylated anti-avidin IgG and avidin, studied by l-SPR and SEM, shows that the l-SPR signal is directly linked to the accessibility of the interior of the NPG porosity, an adjustable experimental parameter that can be set by the dealloying condition and time

    Recent Developments in Fluorescence Correlation Spectroscopy for Diffusion Measurements in Planar Lipid Membranes

    Get PDF
    Fluorescence correlation spectroscopy (FCS) is a single molecule technique used mainly for determination of mobility and local concentration of molecules. This review describes the specific problems of FCS in planar systems and reviews the state of the art experimental approaches such as 2-focus, Z-scan or scanning FCS, which overcome most of the artefacts and limitations of standard FCS. We focus on diffusion measurements of lipids and proteins in planar lipid membranes and review the contributions of FCS to elucidating membrane dynamics and the factors influencing it, such as membrane composition, ionic strength, presence of membrane proteins or frictional coupling with solid support

    Self-referenced spectroscopy using plasmon waveguide resonance biosensor

    No full text
    A plasmon waveguide resonance (PWR) sensor is designed, fabricated, and tested for self-referenced biosensing. The PWR sensor is able to support two different polarizations, TM and TE. The TM polarization has a large sensitivity to variations in the background refractive index while the TE polarization is more sensitive to the surface properties. The ability of the PWR sensor to simultaneously operate in both TM and TE modes is used to decouple the background index variations (bulk effects) from the changes in adlayer thickness (surface effects) via multimode spectroscopy. To benchmark the performance of the PWR, a conventional surface plasmon resonance (SPR) sensor is fabricated and tested under the same conditions
    corecore