26 research outputs found

    Biding time before breeding: flexible use of the Arctic landscape by migratory geese during spring

    Get PDF
    We thank the Governor of Svalbard for allowing access to study sites and the University Centre in Svalbard and Norwegian Polar Institute for logistical support.Peer reviewedPublisher PD

    Impacts of roads on bird species richness: A meta-analysis considering road types, habitats and feeding guilds

    Get PDF
    Roadsides can harbour remarkable biodiversity; thus, they are increasingly considered as habitats with potential for conservation value. To improve construction and management of roadside habitats with positive effects on biodiversity, we require a quantitative understanding of important influential factors that drive both positive and negative effects of roads. We conducted meta-analyses to assess road effects on bird communities. We specifically tested how the relationship between roads and bird richness varies when considering road type, habitat characteristics and feeding guild association. Overall, bird richness was similar in road habitats compared to non-road habitats, however, the two apparently differ in species composition. Bird richness was lowered by road presence in areas with denser tree cover but did not differ according to road type. Richness differences between habitats with and without roads further depended on primary diet of species, and richness of omnivores was positively affected by road presence. We conclude that impacts of roads on bird richness are highly context-dependent, and planners should carefully evaluate road habitats on a case by case basis. This emphasizes the need for further studies that explicitly test for differences in species composition and abundance, to disentangle contexts where a road will negatively affect bird communities, and where it will not

    What are the effects of herbivore diversity on tundra ecosystems? : A systematic review protocol

    Get PDF
    Funding Information: The project was funded by the Icelandic Research Fund (Grant Nr. 217754) and the European Union’s Horizon 2020 programme (CHARTER project, Grant Agreement Nr. 869471). Funding for open access publication was provided by the Agricultural University of Iceland. The funding bodies had no influence in the design of the study and collection, analysis and interpretation of data. Funding Information: This study is a contribution of the Herbivory Network (http://herbivory.lbhi.is), a UArctic Thematic Network. Publisher Copyright: © 2022, The Author(s).Background: Changes in the diversity of herbivore communities can strongly influence the functioning of northern ecosystems. Different herbivores have different impacts on ecosystems because of differences in their diets, behaviour and energy requirements. The combined effects of different herbivores can in some cases compensate each other but lead to stronger directional changes elsewhere. However, the diversity of herbivore assemblages has until recently been a largely overlooked dimension of plant–herbivore interactions. Given the ongoing environmental changes in tundra ecosystems, with increased influx of boreal species and changes in the distribution and abundance of arctic herbivores, a better understanding of the consequences of changes in the diversity of herbivore assemblages is needed. This protocol presents the methodology that will be used in a systematic review on the effects of herbivore diversity on different processes, functions and properties of tundra ecosystems. Methods: This systematic review builds on an earlier systematic map on herbivory studies in the Arctic that identified a relatively large number of studies assessing the effects of multiple herbivores. The systematic review will include primary field studies retrieved from databases, search engines and specialist websites, that compare responses of tundra ecosystems to different levels of herbivore diversity, including both vertebrate and invertebrate herbivores. We will use species richness of herbivores or the richness of functional groups of herbivores as a measure of the diversity of the herbivore assemblages. Studies will be screened in three stages: title, abstract and full text, and inclusion will follow clearly identified eligibility criteria, based on their target population, exposure, comparator and study design. The review will cover terrestrial Arctic ecosystems including the forest-tundra ecotone. Potential outcomes will include multiple processes, functions and properties of tundra ecosystems related to primary productivity, nutrient cycling, accumulation and dynamics of nutrient pools, as well as the impacts of herbivores on other organisms. Studies will be critically appraised for validity, and where studies report similar outcomes, meta-analysis will be performed.Peer reviewe

    Growth rings show limited evidence for ungulates’ potential to suppress shrubs across the Arctic

    Get PDF
    Global warming has pronounced effects on tundra vegetation, and rising mean temperatures increase plant growth potential across the Arctic biome. Herbivores may counteract the warming impacts by reducing plant growth, but the strength of this effect may depend on prevailing regional climatic conditions. To study how ungulates interact with temperature to influence growth of tundra shrubs across the Arctic tundra biome, we assembled dendroecological data from 20 sites, comprising 1153 individual shrubs and 223 63 annual growth rings. Evidence for ungulates suppressing shrub radial growth was only observed at intermediate summer temperatures (6.5 ◦C–9 ◦C), and even at these temperatures the effect was not strong. Multiple factors, including forage preferences and landscape use by the ungulates, and favourable climatic conditions enabling effective compensatory growth of shrubs, may weaken the effects of ungulates on shrubs, possibly explaining the weakness of observed ungulate effects. Earlier local studies have shown that ungulates may counteract the impacts of warming on tundra shrub growth, but we demonstrate that ungulates’ potential to suppress shrub radial growth is not always evident, and may be limited to certain climatic conditions.Research Council of Norwayhttp://iopscience.iop.org/1748-9326dm2022Mammal Research InstituteZoology and Entomolog

    Testing enemy release of non‐native plants across time and space using herbarium specimens in Norway

    Get PDF
    1. The enemy release hypothesis predicts that invasive plant success is in part due to the absence of natural enemies in the invaded range. However, few studies have assessed how enemy release may vary over time or space. 2. Norway has seen a large increase in non-native plant species over the past few decades. We used historical herbarium records to test whether 10 non-native plant species in Norway have suffered less from natural enemies (foliar herbivores) at different latitudes and over the past 195 years, compared to closely related (congeneric) native species. 3. We analysed over 2200 specimens over 26 species. Chewing herbivory was lower at higher latitudes for both non-native and native species. However, there was no evidence of change over time in overall chewing herbivory for either native or non-native species on average. Chewing herbivory of native and non-native species differed within the genera Centaurea, Epilobium and Salix across latitudes, and in the genera Acer, Barbarea, Campanula and Epilobium across time. 4. Synthesis: Our results suggest that enemy release is unlikely to facilitate these non-native plants in Norway since herbivory levels are similar between both non-native and native plant species. Herbivory of these non-native plants did not change over time, suggesting that they were quickly recognized as food sources by native herbivores. Lower levels of herbivory at higher latitudes suggest that herbivory is unlikely to limit non-native plants further north and that herbivory is likely to increase at higher latitudes as the climate warms

    What are the impacts of reindeer/caribou (Rangifer tarandus L.) on arctic and alpine vegetation? : A systematic review protocol

    Get PDF
    Background: Reindeer and caribou (both belonging to the species Rangifer tarandus L.) are among the most important large herbivores in Eurasia’s and North America’s arctic, alpine and boreal zones. In Sweden, the impact of reindeer grazing on arctic and alpine vegetation has recently been re-evaluated. In the 1990s, records of grazing-related vegetation degradation helped to form a widespread perception that some mountain areas were overgrazed. However, later analyses have shown no evidence of large-scale overutilisation of reindeer ranges in the Swedish mountains. The present-day consensus is that overgrazing has been temporary and local, and that it rarely has caused permanent damage, but it is imperative to examine the scientific support for these views. Moreover, the Swedish Parliament has adopted an environmental quality objective according to which it is essential to preserve ‘a mountain landscape characterised by grazing’. No details have been given on how this goal is to be interpreted, which is another reason why the significance of reindeer grazing for arctic/alpine vegetation needs to be assessed. This protocol presents the methodology that will be used in a systematic review of the impact of reindeer herbivory in arctic and alpine ecosystems. The focus will be on Fennoscandia, but data from other parts of the range of R. tarandus will be used when deemed appropriate. Methods: The review will be based on primary field studies that compare vegetation subject to different degrees of reindeer/caribou herbivory (including grazing and browsing as well as trampling). Such comparisons can be either temporal, spatial or both. The review will cover impacts of herbivory in arctic, subarctic, alpine and subalpine areas (including the forest-tundra ecotone) across the range of R. tarandus, but not in boreal forests. Relevant aspects of vegetation include cover (abundance), biomass, diversity (e.g. species richness), structure, composition (including functional groups) and productivity

    What are the effects of herbivore diversity on tundra ecosystems? : A systematic review protocol

    Get PDF
    Funding Information: The project was funded by the Icelandic Research Fund (Grant Nr. 217754) and the European Union’s Horizon 2020 programme (CHARTER project, Grant Agreement Nr. 869471). Funding for open access publication was provided by the Agricultural University of Iceland. The funding bodies had no influence in the design of the study and collection, analysis and interpretation of data. Funding Information: This study is a contribution of the Herbivory Network (http://herbivory.lbhi.is), a UArctic Thematic Network. Publisher Copyright: © 2022, The Author(s).Background: Changes in the diversity of herbivore communities can strongly influence the functioning of northern ecosystems. Different herbivores have different impacts on ecosystems because of differences in their diets, behaviour and energy requirements. The combined effects of different herbivores can in some cases compensate each other but lead to stronger directional changes elsewhere. However, the diversity of herbivore assemblages has until recently been a largely overlooked dimension of plant–herbivore interactions. Given the ongoing environmental changes in tundra ecosystems, with increased influx of boreal species and changes in the distribution and abundance of arctic herbivores, a better understanding of the consequences of changes in the diversity of herbivore assemblages is needed. This protocol presents the methodology that will be used in a systematic review on the effects of herbivore diversity on different processes, functions and properties of tundra ecosystems. Methods: This systematic review builds on an earlier systematic map on herbivory studies in the Arctic that identified a relatively large number of studies assessing the effects of multiple herbivores. The systematic review will include primary field studies retrieved from databases, search engines and specialist websites, that compare responses of tundra ecosystems to different levels of herbivore diversity, including both vertebrate and invertebrate herbivores. We will use species richness of herbivores or the richness of functional groups of herbivores as a measure of the diversity of the herbivore assemblages. Studies will be screened in three stages: title, abstract and full text, and inclusion will follow clearly identified eligibility criteria, based on their target population, exposure, comparator and study design. The review will cover terrestrial Arctic ecosystems including the forest-tundra ecotone. Potential outcomes will include multiple processes, functions and properties of tundra ecosystems related to primary productivity, nutrient cycling, accumulation and dynamics of nutrient pools, as well as the impacts of herbivores on other organisms. Studies will be critically appraised for validity, and where studies report similar outcomes, meta-analysis will be performed.Peer reviewe

    Anderson-et-al-Oryx-fire-frequency-2000-2016

    No full text
    This is a raster in .tif format of MODIS-derived fire frequency between the years 2000 – 2016; the CRS of the raster is in the sinusoidal projection (+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs)

    Anderson-et-al-Oryx-fire-dataset

    No full text
    This is an R file which provides code to read-in and view the MODIS-derived fire products from the Serengeti ecosystem between the years of 2000 and 2016. The two main products which accessed via the code is a raster of fire frequency from 2000 – 2016 (Anderson-et-al-Oryx-fire-frequency-2000-2016.tif) and the spatial distribution of annual burns from 2000 – 2016 provided as a set of stacked rasters (Anderson-et-al-Oryx-annual-fire-bands-2000-2016.tif)

    Anderson-et-al-Oryx-annual-fire-bands-2000-2016

    No full text
    This is a stack of 16 rasters in .tif format showing the spatial locations of annual fires between the years 2000 – 2016 as derived from MODIS; the CRS of the rasters are in the sinusoidal projection (+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs)
    corecore