433 research outputs found

    Allyship for the Rural Health Care Workforce

    Get PDF
    The COVID-19 pandemic revealed a lot about the American impressive yet fragile and overtaxed health care system. Our support systems – both institutional and human- were taxed. Building our network through a variety of methods can help to strengthen our support system while also helping to dismantle the structural inequities that have negative consequences for our workforce and for patient care. Seeking allies in medicine has become an integral component of building one’s network and becoming an ally for those communities that are isolated or under resourced and for those who are underrepresented in medicine has become an important way to help promote structural change at the institutional level

    The short coiled-coil domain-containing protein UNC-69 cooperates with UNC-76 to regulate axonal outgrowth and normal presynaptic organization in Caenorhabditis elegans

    Get PDF
    BACKGROUND: The nematode Caenorhabditis elegans has been used extensively to identify the genetic requirements for proper nervous system development and function. Key to this process is the direction of vesicles to the growing axons and dendrites, which is required for growth-cone extension and synapse formation in the developing neurons. The contribution and mechanism of membrane traffic in neuronal development are not fully understood, however. RESULTS: We show that the C. elegans gene unc-69 is required for axon outgrowth, guidance, fasciculation and normal presynaptic organization. We identify UNC-69 as an evolutionarily conserved 108-amino-acid protein with a short coiled-coil domain. UNC-69 interacts physically with UNC-76, mutations in which produce similar defects to loss of unc-69 function. In addition, a weak reduction-of-function allele, unc-69(ju69), preferentially causes mislocalization of the synaptic vesicle marker synaptobrevin. UNC-69 and UNC-76 colocalize as puncta in neuronal processes and cooperate to regulate axon extension and synapse formation. The chicken UNC-69 homolog is highly expressed in the developing central nervous system, and its inactivation by RNA interference leads to axon guidance defects. CONCLUSION: We have identified a novel protein complex, composed of UNC-69 and UNC-76, which promotes axonal growth and normal presynaptic organization in C. elegans. As both proteins are conserved through evolution, we suggest that the mammalian homologs of UNC-69 and UNC-76 (SCOCO and FEZ, respectively) may function similarly

    A Preference for Contralateral Stimuli in Human Object- and Face-Selective Cortex

    Get PDF
    Visual input from the left and right visual fields is processed predominantly in the contralateral hemisphere. Here we investigated whether this preference for contralateral over ipsilateral stimuli is also found in high-level visual areas that are important for the recognition of objects and faces. Human subjects were scanned with functional magnetic resonance imaging (fMRI) while they viewed and attended faces, objects, scenes, and scrambled images in the left or right visual field. With our stimulation protocol, primary visual cortex responded only to contralateral stimuli. The contralateral preference was smaller in object- and face-selective regions, and it was smallest in the fusiform gyrus. Nevertheless, each region showed a significant preference for contralateral stimuli. These results indicate that sensitivity to stimulus position is present even in high-level ventral visual cortex

    Combined Genome Scans for Body Stature in 6,602 European Twins: Evidence for Common Caucasian Loci

    Get PDF
    Twin cohorts provide a unique advantage for investigations of the role of genetics and environment in the etiology of variation in common complex traits by reducing the variance due to environment, age, and cohort differences. The GenomEUtwin (http://www.genomeutwin.org) consortium consists of eight twin cohorts (Australian, Danish, Dutch, Finnish, Italian, Norwegian, Swedish, and United Kingdom) with the total resource of hundreds of thousands of twin pairs. We performed quantitative trait locus (QTL) analysis of one of the most heritable human complex traits, adult stature (body height) using genome-wide scans performed for 3,817 families (8,450 individuals) derived from twin cohorts from Australia, Denmark, Finland, Netherlands, Sweden, and United Kingdom with an approximate ten-centimorgan microsatellite marker map. The marker maps for different studies differed and they were combined and related to the sequence positions using software developed by us, which is publicly available (https://apps.bioinfo.helsinki.fi/software/cartographer.aspx). Variance component linkage analysis was performed with age, sex, and country of origin as covariates. The covariate adjusted heritability was 81% for stature in the pooled dataset. We found evidence for a major QTL for human stature on 8q21.3 (multipoint logarithm of the odds 3.28), and suggestive evidence for loci on Chromosomes X, 7, and 20. Some evidence of sex heterogeneity was found, however, no obvious female-specific QTLs emerged. Several cohorts contributed to the identified loci, suggesting an evolutionarily old genetic variant having effects on stature in European-based populations. To facilitate the genetic studies of stature we have also set up a website that lists all stature genome scans published and their most significant loci (http://www.genomeutwin.org/stature_gene_map.htm)

    Common genetic variation in the Estrogen Receptor Beta (ESR2) gene and osteoarthritis: results of a meta-analysis

    Get PDF
    Background: The objective of this study was to examine the relationship between common genetic variation of the ESR2 gene and osteoarthritis.Methods: In the discovery study, the Rotterdam Study-I, 7 single nucleotide polymorphisms (SNPs) were genotyped and tested for association with hip (284 cases, 2772 controls), knee (665 cases, 2075 controls), and hand OA (874 cases, 2184 controls) using an additive model. In the replication stage one SNP (rs1256031) was tested in an additional 2080 hip, 1318 knee and 557 hand OA cases and 4001, 2631 and 1699 controls respectively. Fixed- and random-effects meta-analyses were performed over the complete dataset including 2364 hip, 1983 knee and 1431 hand OA cases and approximately 6000 controls.Results: The C allele of rs1256031 was associated with a 36% increased odds of hip OA in women of the Rotterdam Study-I (OR 1.36, 95% CI 1.08-1.70, p = 0.009). Haplotype analysis and analysis of knee- and hand OA did not give additional information. With the replication studies, the meta-analysis did not show a significant effect of this SNP on hip OA in the total population (OR 1.06, 95% CI 0.99-1.15, p = 0.10). Stratification according to gender did not change the results. In this study, we had 80% power to detect an odds ratio of at least 1.14 for hip OA (α = 0.05).Conclusion: This study showed that common genetic variation in the ESR2 gene is not likely to influence the risk of osteoarthritis with effects smaller than a 13% increase

    Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    Get PDF
    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
    • 

    corecore