181 research outputs found

    XplorSeq: A software environment for integrated management and phylogenetic analysis of metagenomic sequence data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Advances in automated DNA sequencing technology have accelerated the generation of metagenomic DNA sequences, especially environmental ribosomal RNA gene (rDNA) sequences. As the scale of rDNA-based studies of microbial ecology has expanded, need has arisen for software that is capable of managing, annotating, and analyzing the plethora of diverse data accumulated in these projects.</p> <p>Results</p> <p>XplorSeq is a software package that facilitates the compilation, management and phylogenetic analysis of DNA sequences. XplorSeq was developed for, but is not limited to, high-throughput analysis of environmental rRNA gene sequences. XplorSeq integrates and extends several commonly used UNIX-based analysis tools by use of a Macintosh OS-X-based graphical user interface (GUI). Through this GUI, users may perform basic sequence import and assembly steps (base-calling, vector/primer trimming, contig assembly), perform BLAST (Basic Local Alignment and Search Tool; <abbrgrp><abbr bid="B1">1</abbr><abbr bid="B2">2</abbr><abbr bid="B3">3</abbr></abbrgrp>) searches of NCBI and local databases, create multiple sequence alignments, build phylogenetic trees, assemble Operational Taxonomic Units, estimate biodiversity indices, and summarize data in a variety of formats. Furthermore, sequences may be annotated with user-specified meta-data, which then can be used to sort data and organize analyses and reports. A document-based architecture permits parallel analysis of sequence data from multiple clones or amplicons, with sequences and other data stored in a single file.</p> <p>Conclusion</p> <p>XplorSeq should benefit researchers who are engaged in analyses of environmental sequence data, especially those with little experience using bioinformatics software. Although XplorSeq was developed for management of rDNA sequence data, it can be applied to most any sequencing project. The application is available free of charge for non-commercial use at <url>http://vent.colorado.edu/phyloware</url>.</p

    Current and Historical Drivers of Landscape Genetic Structure Differ in Core and Peripheral Salamander Populations

    Get PDF
    With predicted decreases in genetic diversity and greater genetic differentiation at range peripheries relative to their cores, it can be difficult to distinguish between the roles of current disturbance versus historic processes in shaping contemporary genetic patterns. To address this problem, we test for differences in historic demography and landscape genetic structure of coastal giant salamanders (Dicamptodon tenebrosus) in two core regions (Washington State, United States) versus the species' northern peripheral region (British Columbia, Canada) where the species is listed as threatened. Coalescent-based demographic simulations were consistent with a pattern of post-glacial range expansion, with both ancestral and current estimates of effective population size being much larger within the core region relative to the periphery. However, contrary to predictions of recent human-induced population decline in the less genetically diverse peripheral region, there was no genetic signature of population size change. Effects of current demographic processes on genetic structure were evident using a resistance-based landscape genetics approach. Among core populations, genetic structure was best explained by length of the growing season and isolation by resistance (i.e. a ‘flat’ landscape), but at the periphery, topography (slope and elevation) had the greatest influence on genetic structure. Although reduced genetic variation at the range periphery of D. tenebrosus appears to be largely the result of biogeographical history rather than recent impacts, our analyses suggest that inherent landscape features act to alter dispersal pathways uniquely in different parts of the species' geographic range, with implications for habitat management

    An equal right to inherit? Women's land rights, customary law and constitutional reform in Tanzania

    Get PDF
    This article explores contemporary contestations surrounding women’s inheritance of land in Africa. Legal activism has gained momentum, both in agendas for law reform and in test case litigation, which reached United Nations Committee on the Elimination of Discrimination against Women in ES and SC v. United Republic of Tanzania. Comparing the approach of Tanzania to that of its neighbours, Uganda, Kenya and Rwanda, this article explores patterns of resistance and omission towards enshrining an equal right to inherit in land and succession laws. It identifies two main reasons: neoliberal drivers for land law reform of the 1990s and sociopolitical sensitivity surrounding inheritance of land. It argues that a progressive approach to constitutional and law reform on women’s land rights requires understanding of the realities of claims to family land based on kinship relations. It calls for a holistic approach to land, marriage and inheritance law reform underpinned with constitutional rights to equality and progressive interpretations of living customary law

    Решение оптимизационных задач для систем массового обслуживання с отказами в условиях неопределенности

    Get PDF
    Построены математические модели расчета показателей качества функционирования вычислительных сетей, которые можно представить в виде сетей массового обслуживания с отказами. Сформулированы задачи оптимизации показателей качества функционирования таких сетей при заданных ограничениях на максимальную пропускную способность каналов связи и на выделяемые для модернизации сети ресурсы. Построены алгоритмы, которые позволяют решать поставленные оптимизационные задачи в рамках оговоренных ограничений

    Adolescent Brain Development and the Risk for Alcohol and Other Drug Problems

    Get PDF
    Dynamic changes in neurochemistry, fiber architecture, and tissue composition occur in the adolescent brain. The course of these maturational processes is being charted with greater specificity, owing to advances in neuroimaging and indicate grey matter volume reductions and protracted development of white matter in regions known to support complex cognition and behavior. Though fronto-subcortical circuitry development is notable during adolescence, asynchronous maturation of prefrontal and limbic systems may render youth more vulnerable to risky behaviors such as substance use. Indeed, binge-pattern alcohol consumption and comorbid marijuana use are common among adolescents, and are associated with neural consequences. This review summarizes the unique characteristics of adolescent brain development, particularly aspects that predispose individuals to reward seeking and risky choices during this phase of life, and discusses the influence of substance use on neuromaturation. Together, findings in this arena underscore the importance of refined research and programming efforts in adolescent health and interventional needs

    Differences in lateral gene transfer in hypersaline versus thermal environments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The role of lateral gene transfer (LGT) in the evolution of microorganisms is only beginning to be understood. While most LGT events occur between closely related individuals, inter-phylum and inter-domain LGT events are not uncommon. These distant transfer events offer potentially greater fitness advantages and it is for this reason that these "long distance" LGT events may have significantly impacted the evolution of microbes. One mechanism driving distant LGT events is microbial transformation. Theoretically, transformative events can occur between any two species provided that the DNA of one enters the habitat of the other. Two categories of microorganisms that are well-known for LGT are the thermophiles and halophiles.</p> <p>Results</p> <p>We identified potential inter-class LGT events into both a thermophilic class of Archaea (Thermoprotei) and a halophilic class of Archaea (Halobacteria). We then categorized these LGT genes as originating in thermophiles and halophiles respectively. While more than 68% of transfer events into Thermoprotei taxa originated in other thermophiles, less than 11% of transfer events into Halobacteria taxa originated in other halophiles.</p> <p>Conclusions</p> <p>Our results suggest that there is a fundamental difference between LGT in thermophiles and halophiles. We theorize that the difference lies in the different natures of the environments. While DNA degrades rapidly in thermal environments due to temperature-driven denaturization, hypersaline environments are adept at preserving DNA. Furthermore, most hypersaline environments, as topographical minima, are natural collectors of cellular debris. Thus halophiles would in theory be exposed to a greater diversity and quantity of extracellular DNA than thermophiles.</p

    No signs of inbreeding despite long-term isolation and habitat fragmentation in the critically endangered Montseny brook newt (Calotriton arnoldi)

    Get PDF
    Endemic species with restricted geographic ranges potentially suffer the highest risk of extinction. If these species are further fragmented into genetically isolated subpopulations, the risk of extinction is elevated. Habitat fragmentation is generally considered to have negative effects on species survival, despite some evidence for neutral or even positive effects. Typically, non-negative effects are ignored by conservation biology. The Montseny brook newt (Calotriton arnoldi) has one of the smallest distribution ranges of any European amphibian (8 km2) and is considered critically endangered by the International Union for Conservation of Nature. Here we apply molecular markers to analyze its population structure and find that habitat fragmentation owing to a natural barrier has resulted in strong genetic division of populations into two sectors, with no detectable migration between sites. Although effective population size estimates suggest low values for all populations, we found low levels of inbreeding and relatedness between individuals within populations. Moreover, C. arnoldi displays similar levels of genetic diversity to its sister species Calotriton asper, from which it separated around 1.5 million years ago and which has a much larger distribution range. Our extensive study shows that natural habitat fragmentation does not result in negative genetic effects, such as the loss of genetic diversity and inbreeding on an evolutionary timescale. We hypothesize that species in such conditions may evolve strategies (for example, special mating preferences) to mitigate the effects of small population sizes. However, it should be stressed that the influence of natural habitat fragmentation on an evolutionary timescale should not be conflated with anthropogenic habitat loss or degradation when considering conservation strategies

    Prefrontal response and frontostriatal functional connectivity to monetary reward in abstinent alcohol-dependent young adults

    Get PDF
    Although altered function in neural reward circuitry is widely proposed in models of addiction, more recent conceptual views have emphasized the role of disrupted response in prefrontal regions. Changes in regions such as the orbitofrontal cortex, medial prefrontal cortex, and dorsolateral prefrontal cortex are postulated to contribute to the compulsivity, impulsivity, and altered executive function that are central to addiction. In addition, few studies have examined function in these regions during young adulthood, when exposure is less chronic than in typical samples of alcohol-dependent adults. To address these issues, we examined neural response and functional connectivity during monetary reward in 24 adults with alcohol dependence and 24 psychiatrically healthy adults. Adults with alcohol dependence exhibited less response to the receipt of monetary reward in a set of prefrontal regions including the medial prefrontal cortex, lateral orbitofrontal cortex, and dorsolateral prefrontal cortex. Adults with alcohol dependence also exhibited greater negative correlation between function in each of these regions and that in the nucleus accumbens. Within the alcohol-dependent group, those with family history of alcohol dependence exhibited lower mPFC response, and those with more frequent drinking exhibited greater negative functional connectivity between the mPFC and the nucleus accumbens. These findings indicate that alcohol dependence is associated with less engagement of prefrontal cortical regions, suggesting weak or disrupted regulation of ventral striatal response. This pattern of prefrontal response and frontostriatal connectivity has consequences for the behavior patterns typical of addiction. Furthermore, brain-behavior findings indicate that the potential mechanisms of disruption in frontostriatal circuitry in alcohol dependence include family liability to alcohol use problems and more frequent use of alcohol. In all, these findings build on the extant literature on reward-circuit function in addiction and suggest mechanisms for disrupted function in alcohol dependence. © 2014 Forbes et al
    corecore