118 research outputs found

    Time for Reading Instruction: How Much Time Should Schools and Teachers Devote to Reading Instruction in Grades K-2?

    Get PDF
    Although research has indicated that time allotted for instruction in reading is associated with reading achievement, no studies have examined what is the appropriate or optimal time that should be given to reading instruction in the primary grades (grades K-2). Given the understanding that it is the teachers themselves who would have the best sense of the appropriate time for reading instruction and its various components. Results of the survey indicate that teachers feel that 178-198 minutes be devoted to the general literacy curriculum, while 62-71 minutes be devoted to the core reading curriculum per day. We note that the allocation of time to the major components of reading instruction (word study, fluency, and comprehension) varied considerably. In follow-up survey inquiries, a significant number of teachers manifest difficulties in actually meeting their own recommendations for time appropriation for reading instruction. Among the factors that keep teachers from meeting their recommendations for instructional time are special events that disrupt and disturb the time given for instruction. Recommendations for making time for literacy instruction for effective and efficient are considered

    On Uniformly Sampling Traces of a Transition System (Extended Version)

    Full text link
    A key problem in constrained random verification (CRV) concerns generation of input stimuli that result in good coverage of the system's runs in targeted corners of its behavior space. Existing CRV solutions however provide no formal guarantees on the distribution of the system's runs. In this paper, we take a first step towards solving this problem. We present an algorithm based on Algebraic Decision Diagrams for sampling bounded traces (i.e. sequences of states) of a sequential circuit with provable uniformity (or bias) guarantees, while satisfying given constraints. We have implemented our algorithm in a tool called TraceSampler. Extensive experiments show that TraceSampler outperforms alternative approaches that provide similar uniformity guarantees.Comment: Extended version of paper that will appear in proceedings of International Conference on Computer-Aided Design (ICCAD '20); changed wrong text color in sec 7; added 'extended version

    Millimeter-scale genetic gradients and community-level molecular convergence in a hypersaline microbial mat

    Get PDF
    To investigate the extent of genetic stratification in structured microbial communities, we compared the metagenomes of 10 successive layers of a phylogenetically complex hypersaline mat from Guerrero Negro, Mexico. We found pronounced millimeter-scale genetic gradients that were consistent with the physicochemical profile of the mat. Despite these gradients, all layers displayed near-identical and acid-shifted isoelectric point profiles due to a molecular convergence of amino-acid usage, indicating that hypersalinity enforces an overriding selective pressure on the mat community

    Global Distribution of Outbreaks of Water-Associated Infectious Diseases

    Get PDF
    Water is essential for maintaining life on Earth but can also serve as a media for many pathogenic organisms, causing a high disease burden globally. However, how the global distribution of water-associated infectious pathogens/diseases looks like and how such distribution is related to possible social and environmental factors remain largely unknown. In this study, we compiled a database on distribution, biology, and epidemiology of water-associated infectious diseases and collected data on population density, annual accumulated temperature, surface water areas, average annual precipitation, and per capita GDP at the global scale. From the database we extracted reported outbreak events from 1991 to 2008 and developed models to explore the association between the distribution of these outbreaks and social and environmental factors. A total of1,428 outbreaks had been reported and this number only reflected ‘the tip of the iceberg’ of the much bigger problem. We found that the outbreaks of water-associated infectious diseases are significantly correlated with social and environmental factors and that all regions are affected disproportionately by different categories of diseases. Relative risk maps are generated to show ‘hotspots’ of risks for different diseases. Despite certain limitations, the findings may be instrumental for future studies and prioritizing health resources

    Abrupt climate change as an important agent of ecological change in the Northeast U.S. throughout the past 15,000 years

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Quaternary Science Reviews 28 (2009): 1693-1709, doi:10.1016/j.quascirev.2009.04.005.We use a series of tests to evaluate two competing hypotheses about the association of climate and vegetation trends in the northeastern United States over the past 15 kyrs. First, that abrupt climate changes on the scale of centuries had little influence on long-term vegetation trends, and second, that abrupt climate changes interacted with slower climate trends to determine the regional sequence of vegetation phases. Our results support the second. Large dissimilarity between temporally-close fossil pollen samples indicates large vegetation changes within 500 years across >4° of latitude at ca. 13.25-12.75, 12.0-11.5, 10.5, 8.25, and 5.25 ka. The evidence of vegetation change coincides with independent isotopic and sedimentary indicators of rapid shifts in temperature and moisture balance. In several cases, abrupt changes reversed long-term vegetation trends, such as when spruce (Picea) and pine (Pinus) pollen percentages rapidly declined to the north and increased to the south at ca. 13.25-12.75 and 8.25 ka respectively. Abrupt events accelerated other long‐term trends, such as a regional increase in beech (Fagus) pollen percentages at 8.5-8.0 ka. The regional hemlock (Tsuga) decline at ca. 5.25 ka is unique among the abrupt events, and may have been induced by high climatic variability (i.e., repeated severe droughts from 5.7-2.0 ka); autoregressive ecological and evolutionary processes could have maintained low hemlock abundance until ca. 2.0 ka. Delayed increases in chestnut (Castanea) pollen abundance after 5.8 and 2.5 ka also illustrate the potential for multi-century climate variability to influence species’ recruitment as well as mortality. Future climate changes will probably also rapidly initiate persistent vegetation change, particularly by acting as broad, regional-scale disturbances.This work was supported by NSF grants to B. Shuman (EAR‐0602408; DEB‐0816731) and J. Donnelly (EAR‐0602380)

    New fossils of Australopithecus sediba reveal a nearly complete lower back

    Get PDF
    Abstract: Adaptations of the lower back to bipedalism are frequently discussed but infrequently demonstrated in early fossil hominins. Newly discovered lumbar vertebrae contribute to a near-complete lower back of Malapa Hominin 2 (MH2), offering additional insights into posture and locomotion in Australopithecus sediba. We show that MH2 demonstrates a lower back consistent with human-like lumbar lordosis and other adaptations to bipedalism, including an increase in the width of intervertebral articular facets from the upper to lower lumbar column (“pyramidal configuration”). This contrasts with recent work on lordosis in fossil hominins, where MH2 was argued to demonstrate no appreciable lordosis (“hypolordosis”) similar to Neandertals. Our three-dimensional geometric morphometric (3D GM) analyses show that MH2’s nearly complete middle lumbar vertebra is human-like in shape but bears large, cranially-directed transverse processes, implying powerful trunk musculature. We interpret this combination of features to indicate that A. sediba used its lower back in both human-like bipedalism and ape-like arboreal positional behaviors, as previously suggested based on multiple lines of evidence from other parts of the skeleton and reconstructed paleobiology of A. sediba

    Counteractive effects of antenatal glucocorticoid treatment on D1 receptor modulation of spatial working memory

    Get PDF
    RATIONALE: Antenatal exposure to the glucocorticoid dexamethasone dramatically increases the number of mesencephalic dopaminergic neurons in rat offspring. However, the consequences of this expansion in midbrain dopamine (DA) neurons for behavioural processes in adulthood are poorly understood, including working memory that depends on DA transmission in the prefrontal cortex (PFC). OBJECTIVES: We therefore investigated the influence of antenatal glucocorticoid treatment (AGT) on the modulation of spatial working memory by a D1 receptor agonist and on D1 receptor binding and DA content in the PFC and striatum. METHODS: Pregnant rats received AGT on gestational days 16-19 by adding dexamethasone to their drinking water. Male offspring reared to adulthood were trained on a delayed alternation spatial working memory task and administered the partial D1 agonist SKF38393 (0.3-3 mg/kg) by systemic injection. In separate groups of control and AGT animals, D1 receptor binding and DA content were measured post-mortem in the PFC and striatum. RESULTS: SKF38393 impaired spatial working memory performance in control rats but had no effect in AGT rats. D1 binding was significantly reduced in the anterior cingulate cortex, prelimbic cortex, dorsal striatum and ventral pallidum of AGT rats compared with control animals. However, AGT had no significant effect on brain monoamine levels. CONCLUSIONS: These findings demonstrate that D1 receptors in corticostriatal circuitry down-regulate in response to AGT. This compensatory effect in D1 receptors may result from increased DA-ergic tone in AGT rats and underlie the resilience of these animals to the disruptive effects of D1 receptor activation on spatial working memory

    You and me versus the rest of the world: the effects of affiliative motivation and ingroup partner status on social tuning

    Get PDF
    Bandura argues that individuals are more likely to engage in social learning when they identify with a social model and when they are motivated or rewarded. Therefore, in the present work, we investigate how these two key factors, perceived similarity and affiliative motivation, influence the extent to which individuals engage in social tuning or align their views with an interaction partner—especially if their partner’s attitudes differ from the larger social group. Experiment 1 (170 participants) explored the role of perceived similarity through group membership when needing to work collaboratively with a collaboration partner whose climate change beliefs differed from a larger social group. Experiment 2 (115 participants) directly manipulated affiliative motivation (i.e., length of interaction time) along with perceived similarity (i.e., Greek Life membership) to explore if these factors influenced social tuning of drinking attitudes and behaviors. Experiments 3 (69 participants) and 4 (93 participants) replicated Experiment 2 and examined whether tuning occurred for explicit and implicit attitudes towards weight (negative views Experiment 3 and positive views Experiment 4). Results indicate that when individuals experience high affiliative motivation, they are more likely to engage in social tuning of explicit and implicit attitudes when their interaction partner belongs to their ingroup rather than their outgroup. These findings are consistent with the tenets of Social Learning Theory, Shared Reality Theory, and the affiliative social tuning hypothesis
    corecore